Search results
Results from the WOW.Com Content Network
Plot of the number of divisors of integers from 1 to 1000. Highly composite numbers are in bold and superior highly composite numbers are starred. ... 15, 21, 27, 35 ...
A highly composite number is a positive integer that has more divisors than all smaller positive integers. If d(n) denotes the number of divisors of a positive integer n, then a positive integer N is highly composite if d(N) > d(n) for all n < N. For example, 6 is highly composite because d(6)=4 and d(n)=1,2,2,3,2 for n=1,2,3,4,5 respectively.
65536 is the natural number following 65535 and preceding 65537.. 65536 is a power of two: (2 to the 16th power).. 65536 is the smallest number with exactly 17 divisors (but there are smaller numbers with more than 17 divisors; e.g., 180 has 18 divisors) (sequence A005179 in the OEIS).
A divisor of that is not a trivial divisor is known as a non-trivial divisor (or strict divisor [6]). A nonzero integer with at least one non-trivial divisor is known as a composite number , while the units −1 and 1 and prime numbers have no non-trivial divisors.
An economical number has been defined as a frugal number, but also as a number that is either frugal or equidigital. gcd( m , n ) ( greatest common divisor of m and n ) is the product of all prime factors which are both in m and n (with the smallest multiplicity for m and n ).
The first 15 superior highly composite numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 (sequence A002201 in the OEIS) are also the first 15 colossally abundant numbers, which meet a similar condition based on the sum-of-divisors function rather than the number of divisors. Neither ...
In order to better enforce anti-spam policies, AOL does not disclose the number of recipients or emails that can be sent at one time. If you've received a notification that a limit has been met, you'll need to wait a set amount of time before you can send more emails. Most sending limit notifications inform you of how long you'll have to wait.
65535 is the fifteenth 626-gonal number, the fifth 6555-gonal number, and the third 21846-gonal number. 65535 is the product of the first four Fermat primes: 65535 = (2 + 1)(4 + 1)(16 + 1)(256 + 1). Because of this property, it is possible to construct with compass and straightedge a regular polygon with 65535 sides (see, constructible polygon).