enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Invariants of tensors - Wikipedia

    en.wikipedia.org/wiki/Invariants_of_tensors

    These are the coefficients of the characteristic polynomial of the deviator (() /), such that it is traceless. The separation of a tensor into a component that is a multiple of the identity and a traceless component is standard in hydrodynamics, where the former is called isotropic, providing the modified pressure, and the latter is called ...

  3. Harmonic tensors - Wikipedia

    en.wikipedia.org/wiki/Harmonic_tensors

    Here, properties of tensors, including high-rank moments as well, are considered to repeat basically features of solid spherical functions but having their own specifics. Using of invariant polynomial tensors in Cartesian coordinates , as shown in a number of recent studies, is preferable and simplifies the fundamental scheme of calculations ...

  4. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.

  5. Tensor algebra - Wikipedia

    en.wikipedia.org/wiki/Tensor_algebra

    In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...

  6. Cartesian tensor - Wikipedia

    en.wikipedia.org/wiki/Cartesian_tensor

    A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):

  7. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    The real part of the other side is a polynomial in cos x and sin x, in which all powers of sin x are even and thus replaceable through the identity cos 2 x + sin 2 x = 1. By the same reasoning, sin nx is the imaginary part of the polynomial, in which all powers of sin x are odd and thus, if one factor of sin x is factored out, the remaining ...

  8. Symmetric tensor - Wikipedia

    en.wikipedia.org/wiki/Symmetric_tensor

    The space of symmetric tensors of order r on a finite-dimensional vector space V is naturally isomorphic to the dual of the space of homogeneous polynomials of degree r on V. Over fields of characteristic zero, the graded vector space of all symmetric tensors can be naturally identified with the symmetric algebra on V.

  9. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    A general 3d rotation of a vector a, about an axis in the direction of a unit vector ω and anticlockwise through angle θ, can be performed using Rodrigues' rotation formula in the dyadic form a r o t = R ⋅ a , {\displaystyle \mathbf {a} _{\mathrm {rot} }=\mathbf {R} \cdot \mathbf {a} \,,}