Search results
Results from the WOW.Com Content Network
The real part of the other side is a polynomial in cos x and sin x, in which all powers of sin x are even and thus replaceable through the identity cos 2 x + sin 2 x = 1. By the same reasoning, sin nx is the imaginary part of the polynomial, in which all powers of sin x are odd and thus, if one factor of sin x is factored out, the remaining ...
The Taylor polynomials for ln(1 + x) only provide accurate approximations in the range −1 < x ≤ 1. For x > 1, Taylor polynomials of higher degree provide worse approximations. The Taylor approximations for ln(1 + x) (black). For x > 1, the approximations diverge. Pictured is an accurate approximation of sin x around the point x = 0. The ...
These are the coefficients of the characteristic polynomial of the deviator (() /), such that it is traceless. The separation of a tensor into a component that is a multiple of the identity and a traceless component is standard in hydrodynamics, where the former is called isotropic, providing the modified pressure, and the latter is called ...
The Taylor polynomial is the unique "asymptotic best fit" polynomial in the sense that if there exists a function h k : R → R and a -th order polynomial p such that f ( x ) = p ( x ) + h k ( x ) ( x − a ) k , lim x → a h k ( x ) = 0 , {\displaystyle f(x)=p(x)+h_{k}(x)(x-a)^{k},\quad \lim _{x\to a}h_{k}(x)=0,}
In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
This means that there is no need to distinguish covariant and contravariant components, and furthermore there is no need to distinguish tensors and tensor densities. All Cartesian-tensor indices are written as subscripts. Cartesian tensors achieve considerable computational simplification at the cost of generality and of some theoretical insight.
Multilinear algebra is the study of functions with multiple vector-valued arguments, with the functions being linear maps with respect to each argument. It involves concepts such as matrices, tensors, multivectors, systems of linear equations, higher-dimensional spaces, determinants, inner and outer products, and dual spaces.