Ad
related to: table of positive divisors of 4 and 9 multiplication charteducation.com has been visited by 100K+ users in the past month
It’s an amazing resource for teachers & homeschoolers - Teaching Mama
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Interactive Stories
Search results
Results from the WOW.Com Content Network
The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m , for which n / m is again an integer (which is necessarily also a divisor of n ). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).
The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in table of divisors.
Perfect numbers are natural numbers that equal the sum of their positive proper divisors, which are divisors excluding the number itself. So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. [2] [4]
These twenty fractions are all the positive k / d ≤ 1 whose denominators are the divisors d = 1, 2, 4, 5, 10, 20. The fractions with 20 as denominator are those with numerators relatively prime to 20, namely 1 / 20 , 3 / 20 , 7 / 20 , 9 / 20 , 11 / 20 , 13 / 20 , 17 / 20 , 19 / 20 ...
Abundancy may also be expressed as () where denotes a divisor function with () equal to the sum of the k-th powers of the divisors of n. The numbers 1 through 5 are all solitary. The smallest friendly number is 6, forming for example, the friendly pair 6 and 28 with abundancy σ(6) / 6 = (1+2+3+6) / 6 = 2, the same as σ(28) / 28 = (1+2+4+7+14 ...
The Möbius function is defined by [3] = {= >The Möbius function can alternatively be represented as = () (),where is the Kronecker delta, () is the Liouville function, is the number of distinct prime divisors of , and () is the number of prime factors of , counted with multiplicity.
The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right complex half plane with absolute value of the real part larger than or equal to the absolute value of the imaginary part.
A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Accordingly it is a positive integer that has at least one divisor other than 1 and itself. [1] [2] Every positive integer is composite, prime, or the unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit.
Ad
related to: table of positive divisors of 4 and 9 multiplication charteducation.com has been visited by 100K+ users in the past month
It’s an amazing resource for teachers & homeschoolers - Teaching Mama