enow.com Web Search

  1. Ads

    related to: table of positive divisors of 4 and 9 multiplication practice
  2. It’s an amazing resource for teachers & homeschoolers - Teaching Mama

    • Printable Workbooks

      Download & print 300+ workbooks

      written & reviewed by teachers.

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

Search results

  1. Results from the WOW.Com Content Network
  2. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m , for which n / m is again an integer (which is necessarily also a divisor of n ). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).

  3. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...

  4. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in table of divisors.

  5. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    These twenty fractions are all the positive ⁠ k / d ⁠ ≤ 1 whose denominators are the divisors d = 1, 2, 4, 5, 10, 20. The fractions with 20 as denominator are those with numerators relatively prime to 20, namely ⁠ 1 / 20 ⁠, ⁠ 3 / 20 ⁠, ⁠ 7 / 20 ⁠, ⁠ 9 / 20 ⁠, ⁠ 11 / 20 ⁠, ⁠ 13 / 20 ⁠, ⁠ 17 / 20 ⁠, ⁠ 19 / 20 ...

  6. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    For example, in the case of p = 10, a = 4, b = 15, composite number 10 divides ab = 4 × 15 = 60, but 10 divides neither 4 nor 15. This property is the key in the proof of the fundamental theorem of arithmetic. [note 2] It is used to define prime elements, a generalization of prime numbers to arbitrary commutative rings.

  7. Friendly number - Wikipedia

    en.wikipedia.org/wiki/Friendly_number

    Abundancy may also be expressed as () where denotes a divisor function with () equal to the sum of the k-th powers of the divisors of n. The numbers 1 through 5 are all solitary. The smallest friendly number is 6, forming for example, the friendly pair 6 and 28 with abundancy σ(6) / 6 = (1+2+3+6) / 6 = 2, the same as σ(28) / 28 = (1+2+4+7+14 ...

  8. Möbius inversion formula - Wikipedia

    en.wikipedia.org/wiki/Möbius_inversion_formula

    where μ is the Möbius function and the sums extend over all positive divisors d of n (indicated by in the above formulae). In effect, the original f(n) can be determined given g(n) by using the inversion formula. The two sequences are said to be Möbius transforms of each other.

  9. Möbius function - Wikipedia

    en.wikipedia.org/wiki/Möbius_function

    The Möbius function is defined by [3] = {= >The Möbius function can alternatively be represented as = () (),where is the Kronecker delta, () is the Liouville function, is the number of distinct prime divisors of , and () is the number of prime factors of , counted with multiplicity.

  1. Ads

    related to: table of positive divisors of 4 and 9 multiplication practice