Search results
Results from the WOW.Com Content Network
Frequency dispersion of surface gravity waves on deep water. The red square moves with the phase velocity, and the green dots propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square traverses the figure in the time it takes the green dot to traverse half.
Water vapor concentration for this gas mixture is 0.4%. Water vapor is a greenhouse gas in the Earth's atmosphere, responsible for 70% of the known absorption of incoming sunlight, particularly in the infrared region, and about 60% of the atmospheric absorption of thermal radiation by the Earth known as the greenhouse effect. [25]
Since this shallow-water phase speed is independent of the wavelength, shallow water waves do not have frequency dispersion. Using another normalization for the same frequency dispersion relation, the figure on the right shows that for a fixed wavelength λ the phase speed c p increases with increasing water depth. [1]
Frequency dispersion in groups of gravity waves on the surface of deep water. The red square moves with the phase velocity, and the green circles propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square overtakes two green circles when moving from the left to the right of the figure.
The difference () = () between the phases of two periodic signals and is called the phase difference or phase shift of relative to . [1] At values of t {\displaystyle t} when the difference is zero, the two signals are said to be in phase; otherwise, they are out of phase with each other.
In a dispersive prism, material dispersion (a wavelength-dependent refractive index) causes different colors to refract at different angles, splitting white light into a spectrum. A compact fluorescent lamp seen through an Amici prism. Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1]
Note that the phase of the reflection coefficient is changed by twice the phase length of the attached transmission line. That is to take into account not only the phase delay of the reflected wave, but the phase shift that had first been applied to the forward wave, with the reflection coefficient being the quotient of these.
The optical path difference between the paths taken by two identical waves can then be used to find the phase change. Finally, using the phase change, the interference between the two waves can be calculated. Fermat's principle states that the path light takes between two points is the path that has the minimum optical path length.