enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite strain theory - Wikipedia

    en.wikipedia.org/wiki/Finite_strain_theory

    The deformation gradient , like any invertible second-order tensor, can be decomposed, using the polar decomposition theorem, into a product of two second-order tensors (Truesdell and Noll, 1965): an orthogonal tensor and a positive definite symmetric tensor, i.e., = = where the tensor is a proper orthogonal tensor, i.e., = and ...

  3. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The linear nature of tensor implies that two tensors of the same type may be added together, and that tensors may be multiplied by a scalar with results analogous to the scaling of a vector. On components, these operations are simply performed component-wise.

  4. Strain-rate tensor - Wikipedia

    en.wikipedia.org/wiki/Strain-rate_tensor

    A two-dimensional flow that, at the highlighted point, has only a strain rate component, with no mean velocity or rotational component. In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the strain (i.e., the relative deformation) of a material in the neighborhood of a certain point, at a certain moment of time.

  5. Infinitesimal strain theory - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal_strain_theory

    For infinitesimal deformations of a continuum body, in which the displacement gradient tensor (2nd order tensor) is small compared to unity, i.e. ‖ ‖, it is possible to perform a geometric linearization of any one of the finite strain tensors used in finite strain theory, e.g. the Lagrangian finite strain tensor, and the Eulerian finite strain tensor.

  6. Compatibility (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Compatibility_(mechanics)

    The compatibility conditions in linear elasticity are obtained by observing that there are six strain-displacement relations that are functions of only three unknown displacements. This suggests that the three displacements may be removed from the system of equations without loss of information.

  7. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    In orthogonal curvilinear coordinates of 3 dimensions, where = ; = = one can express the gradient of a scalar or vector field as = = = ; = For an orthogonal basis = = = The divergence of a vector field can then be written as = ( ) Also, = = = ; = = ; = = Therefore, = ( ) We can get an expression for the Laplacian in a similar manner by noting ...

  8. Linear elasticity - Wikipedia

    en.wikipedia.org/wiki/Linear_elasticity

    Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.

  9. Strain (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Strain_(mechanics)

    In mechanics, strain is defined as relative deformation, compared to a reference position configuration. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered.