Search results
Results from the WOW.Com Content Network
The Java collections framework supports generics to specify the type of objects stored in a collection instance. In 1998, Gilad Bracha, Martin Odersky, David Stoutamire and Philip Wadler created Generic Java, an extension to the Java language to support generic types. [4] Generic Java was incorporated in Java with the addition of wildcards.
The Collection interface is a subinterface of java.lang.Iterable, so any Collection may be the target of a for-each statement. (The Iterable interface provides the iterator() method used by for-each statements.) All Collections have an java.util.Iterator that goes through all of the elements in the Collection. Collection is generic.
As for migration compatibility, new generic collection classes and interfaces were developed that supplemented the non-generic .NET 1.x collections rather than replacing them. In addition to generic collection interfaces, the new generic collection classes implement the non-generic collection interfaces where possible.
When primitive and value types are used as generic arguments, they get specialized implementations, allowing for efficient generic collections and methods. As in C++ and Java, nested generic types such as Dictionary<string, List<int>> are valid types, however are advised against for member signatures in code analysis design rules. [29]
In the Java programming language, the wildcard? is a special kind of type argument [1] that controls the type safety of the use of generic (parameterized) types. [2] It can be used in variable declarations and instantiations as well as in method definitions, but not in the definition of a generic type.
Java, C#, Visual Basic .NET and Delphi have each introduced "generics" for parametric polymorphism. Some implementations of type polymorphism are superficially similar to parametric polymorphism while also introducing ad hoc aspects. One example is C++ template specialization.
Java has generics, which main purpose is to provide type-safe containers. C++ has compile-time templates, which provide more extensive support for generic programming and metaprogramming. Java has annotations, which allow adding arbitrary custom metadata to classes and metaprogramming via an annotation processing tool.
The Java programming language and Java software platform have been criticized for design choices including the implementation of generics, forced object-oriented programming, the handling of unsigned numbers, the implementation of floating-point arithmetic, and a history of security vulnerabilities in the primary Java VM implementation, HotSpot.