Search results
Results from the WOW.Com Content Network
The use of transposons is well-developed in Drosophila (in which P elements are most commonly used) and in Thale cress (Arabidopsis thaliana) and bacteria such as Escherichia coli (E. coli ). [1] [2] Currently transposons can be used in genetic research and recombinant genetic engineering for insertional mutagenesis.
DNA transposons are DNA sequences, sometimes referred to "jumping genes", that can move and integrate to different locations within the genome. [1] They are class II transposable elements (TEs) that move through a DNA intermediate, as opposed to class I TEs, retrotransposons , that move through an RNA intermediate. [ 2 ]
A bacterial DNA transposon. A transposable element (TE), also transposon, or jumping gene, is a type of mobile genetic element, a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size.
Though transposable elements were discovered due in large part to their deleterious effects, epigenetic research has shown that they may be, in some cases, beneficial to the host organism. [ 3 ] (1,5) This research indicates that the distinction between those two aspects, mutualist and parasite, may be harder to accurately describe than was ...
DNA transposons, LTR retrotransposons, SINEs, and LINEs make up a majority of the human genome. Mobile genetic elements (MGEs), sometimes called selfish genetic elements, [1] are a type of genetic material that can move around within a genome, or that can be transferred from one species or replicon to another. MGEs are found in all organisms.
The Tn5 transposon system is a model system for the study of transposition and for the application of transposon mutagenesis. Tn5 is a bacterial composite transposon in which genes (the original system containing antibiotic resistance genes) are flanked by two nearly identical insertion sequences , named IS50R and IS50L corresponding to the ...
The Sleeping Beauty (SB) transposase is the recombinase that drives the Sleeping Beauty transposon system. [9] SB transposase belongs to the DD[E/D] family of transposases, which in turn belong to a large superfamily of polynucleotidyl transferases that includes RNase H, RuvC Holliday resolvase, RAG proteins, and retroviral integrases.
The PiggyBac (PB) transposon system employs a genetically engineered transposase enzyme to insert a gene into a cell's genome. It is built upon the natural PiggyBac (PB) transposable element (transposon), enabling the back and forth movement of genes between chromosomes and genetic vectors such as plasmids through a "cut and paste" mechanism.