Search results
Results from the WOW.Com Content Network
In a titration of a weak acid with a strong base the pH rises more steeply as the end-point is approached. At the end-point, the slope of the curve of pH with respect to amount of titrant is a maximum. Since the end-point occurs at pH greater than 7, the most suitable indicator to use is one, like phenolphthalein, that changes color at high pH. [2]
In chemistry and thermodynamics, the enthalpy of neutralization (ΔH n) is the change in enthalpy that occurs when one equivalent of an acid and a base undergo a neutralization reaction to form water and a salt. It is a special case of the enthalpy of reaction. It is defined as the energy released with the formation of 1 mole of water.
An example of this would be the following reaction, where "HA" is the strong acid: HA + H 2 O → A − + H 3 O + Any acid that is stronger than H 3 O + reacts with H 2 O to form H 3 O +. Therefore, no acid stronger than H 3 O + exists in H 2 O.
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
or also by neutralizing it with sodium hydroxide (however, this reaction is very exothermic): HNO 3 + NaOH → NaNO 3 + H 2 O. or by mixing stoichiometric amounts of ammonium nitrate and sodium hydroxide, sodium bicarbonate or sodium carbonate: NH 4 NO 3 + NaOH → NaNO 3 + NH 4 OH NH 4 NO 3 + NaHCO 3 → NaNO 3 + NH 4 HCO 3 2NH 4 NO 3 + Na 2 ...
2 zn(no 3) 2 → 2 zno + 4 no 2 + 1 o 2 Aqueous zinc nitrate contains aquo complexes [Zn(H 2 O) 6 ] 2+ and [Zn(H 2 O) 4 ] 2+ . [ 3 ] and, thus, this reaction may be better written as the reaction of the aquated ion with hydroxide through donation of a proton, as follows.
The proton (H +) [11] is one of the strongest but is also one of the most complicated Lewis acids. It is convention to ignore the fact that a proton is heavily solvated (bound to solvent). With this simplification in mind, acid-base reactions can be viewed as the formation of adducts: H + + NH 3 → NH + 4; H + + OH − → H 2 O
The reaction produces fragments from the parent alkane, creating a diverse mixture of products; for instance, nitromethane, nitroethane, 1-nitropropane, and 2-nitropropane are produced by treating propane with nitric acid in the gas phase (e.g. 350–450 °C and 8–12 atm).