Search results
Results from the WOW.Com Content Network
A weak acid cannot always be neutralized by a weak base, and vice versa. However, for the neutralization of benzoic acid (K a,A = 6.5 × 10 −5) with ammonia (K a,B = 5.6 × 10 −10 for ammonium), K = 1.2 × 10 5 >> 1, and more than 99% of the benzoic acid is converted to benzoate.
as the acid and the base are fully dissociated and neither the cation B + nor the anion A − are involved in the neutralization reaction. [1] The enthalpy change for this reaction is -57.62 kJ/mol at 25 °C. For weak acids or bases, the heat of neutralization is pH-dependent. [1]
2 zn(no 3) 2 → 2 zno + 4 no 2 + 1 o 2 Aqueous zinc nitrate contains aquo complexes [Zn(H 2 O) 6 ] 2+ and [Zn(H 2 O) 4 ] 2+ . [ 3 ] and, thus, this reaction may be better written as the reaction of the aquated ion with hydroxide through donation of a proton, as follows.
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
Nitric acid reacts with most metals, but the details depend on the concentration of the acid and the nature of the metal. Dilute nitric acid behaves as a typical acid in its reaction with most metals. Magnesium, manganese, and zinc liberate H 2: Mg + 2 HNO 3 → Mg(NO 3) 2 + H 2 Mn + 2 HNO 3 → Mn(NO 3) 2 + H 2 Zn + 2 HNO 3 → Zn(NO 3) 2 + H 2
or also by neutralizing it with sodium hydroxide (however, this reaction is very exothermic): HNO 3 + NaOH → NaNO 3 + H 2 O. or by mixing stoichiometric amounts of ammonium nitrate and sodium hydroxide, sodium bicarbonate or sodium carbonate: NH 4 NO 3 + NaOH → NaNO 3 + NH 4 OH NH 4 NO 3 + NaHCO 3 → NaNO 3 + NH 4 HCO 3 2NH 4 NO 3 + Na 2 ...
A closely related mixture, sometimes called "base piranha", is a 5:1:1 mixture of water, ammonia solution (NH 4 OH, or NH 3 (aq)), and 30% hydrogen peroxide. [2] [3] As hydrogen peroxide is less stable at high pH than under acidic conditions, NH 4 OH (pH c. 11.6) also accelerates its decomposition. At higher pH, H 2 O 2 will decompose violently.
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...