enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Andreev reflection - Wikipedia

    en.wikipedia.org/wiki/Andreev_reflection

    Andreev reflection, named after the Russian physicist Alexander F. Andreev, is a type of particle scattering which occurs at interfaces between a superconductor (S) and a normal state material (N). It is a charge-transfer process by which normal current in N is converted to supercurrent in S.

  3. Type-II superconductor - Wikipedia

    en.wikipedia.org/wiki/Type-II_superconductor

    These materials are type-II superconductors with substantial upper critical field H c2, and in contrast to, for example, the cuprate superconductors with even higher H c2, they can be easily machined into wires. Recently, however, 2nd generation superconducting tapes are allowing replacement of cheaper niobium-based wires with much more ...

  4. Josephson effect - Wikipedia

    en.wikipedia.org/wiki/Josephson_effect

    Josephson junction array chip developed by the National Institute of Standards and Technology as a standard volt. In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them.

  5. Proximity effect (superconductivity) - Wikipedia

    en.wikipedia.org/wiki/Proximity_effect...

    Plot showing superconducting electron density versus depth in normal and superconducting layers with two coherence lengths, and .. Proximity effect or Holm–Meissner effect is a term used in the field of superconductivity to describe phenomena that occur when a superconductor (S) is placed in contact with a "normal" (N) non-superconductor.

  6. Bean's critical state model - Wikipedia

    en.wikipedia.org/wiki/Bean's_critical_state_model

    Calculated magnetization curve for a superconducting slab, based on Bean's model. The superconducting slab is initially at H = 0. Increasing H to critical field H* causes the blue curve; dropping H back to 0 and reversing direction to increase it to -H* causes the green curve; dropping H back to 0 again and increase H to H* causes the orange curve.

  7. Abrikosov vortex - Wikipedia

    en.wikipedia.org/wiki/Abrikosov_vortex

    Vortices in a 200-nm-thick YBCO film imaged by scanning SQUID microscopy [1]. In superconductivity, a fluxon (also called an Abrikosov vortex or quantum vortex) is a vortex of supercurrent in a type-II superconductor, used by Soviet physicist Alexei Abrikosov to explain magnetic behavior of type-II superconductors. [2]

  8. Alexander Andreev - Wikipedia

    en.wikipedia.org/wiki/Alexander_Andreev

    Alexander Fyodorovich Andreev (Russian: Александр Фёдорович Андреев, 10 December 1939 – 14 March 2023) [1] was a Russian theoretical physicist best known for explaining the eponymous Andreev reflection. [2] Andreev was educated at the Moscow Institute of Physics and Technology, starting in 1959 and graduating ahead of ...

  9. File:Andreev reflection.svg - Wikipedia

    en.wikipedia.org/wiki/File:Andreev_reflection.svg

    Diagram of Andreev reflection. An electron meeting the interface between a normal conductor and a superconductor produces a Cooper pair in the superconductor and a retroreflected electron hole in the normal conductor. Legend: "N" = normal conductor, "S" = superconductor, red = electron, green = hole. Arrows indicate the spin band occupied by ...