Search results
Results from the WOW.Com Content Network
Flat and sharp are mutually inverse isomorphisms of smooth vector bundles, hence, for each p in M, there are mutually inverse vector space isomorphisms between T p M and T ∗ p M. The flat and sharp maps can be applied to vector fields and covector fields by applying them to each point. Hence, if X is a vector field and ω is a covector field,
Differential geometry finds applications throughout mathematics and the natural sciences. Most prominently the language of differential geometry was used by Albert Einstein in his theory of general relativity, and subsequently by physicists in the development of quantum field theory and the standard model of particle physics.
Vector field; Tensor field; Differential form; Exterior derivative; Lie derivative; pullback (differential geometry) pushforward (differential) jet (mathematics) Contact (mathematics) jet bundle; Frobenius theorem (differential topology) Integral curve
The differential geometry of surfaces is concerned with a mathematical understanding of such phenomena. The study of this field, which was initiated in its modern form in the 1700s, has led to the development of higher-dimensional and abstract geometry, such as Riemannian geometry and general relativity. [original research?]
The metric tensor (,) induces duality mappings between vector fields and one-forms: these are the musical isomorphisms flat ♭ and sharp ♯. A section A ∈ Γ ( T M ) {\displaystyle A\in \Gamma (TM)} corresponds to the unique one-form A ♭ ∈ Ω 1 ( M ) {\displaystyle A^{\flat }\in \Omega ^{1}(M)} such that for all sections X ∈ Γ ( T M ...
In differential geometry, the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the surface at that point. Namely, given a surface X in Euclidean space R 3 , the Gauss map is a map N : X → S 2 (where S 2 is the unit sphere ) such that for each p in X , the function value N ( p ) is ...
In the language of differential geometry, this derivative is a one-form on the punctured plane. It is closed (its exterior derivative is zero) but not exact , meaning that it is not the derivative of a 0-form (that is, a function): the angle θ {\\displaystyle \\theta } is not a globally defined smooth function on the entire punctured plane.
That is, df is the unique 1-form such that for every smooth vector field X, df (X) = d X f , where d X f is the directional derivative of f in the direction of X. The exterior product of differential forms (denoted with the same symbol ∧) is defined as their pointwise exterior product.