enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. [1] Some particular properties of real-valued sequences and functions that real analysis studies include convergence , limits , continuity , smoothness , differentiability and integrability .

  3. Hyperreal number - Wikipedia

    en.wikipedia.org/wiki/Hyperreal_number

    The real numbers are considered as the constant sequences, the sequence is zero if it is identically zero, that is, a n = 0 for all n. In our ring of sequences one can get ab = 0 with neither a = 0 nor b = 0. Thus, if for two sequences , one has ab = 0, at least one of them should be declared zero. Surprisingly enough, there is a consistent way ...

  4. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    In the real numbers every Cauchy sequence converges to some limit. A Cauchy sequence is a sequence whose terms ultimately become arbitrarily close together, after sufficiently many initial terms have been discarded. The notion of a Cauchy sequence is important in the study of sequences in metric spaces, and, in particular, in real analysis.

  5. Sequences (book) - Wikipedia

    en.wikipedia.org/wiki/Sequences_(book)

    It also discusses the sequences that contain all integer multiples of their members, the Davenport–Erdős theorem according to which the lower natural and logarithmic density exist and are equal for such sequences, and a related construction of Besicovitch of a sequence of multiples that has no natural density. [3] [6] [7]

  6. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    When every term of a series is a non-negative real number, for instance when the terms are the absolute values of another series of real numbers or complex numbers, the sequence of partial sums is non-decreasing. Therefore a series with non-negative terms converges if and only if the sequence of partial sums is bounded, and so finding a bound ...

  7. Category:Theorems about real number sequences - Wikipedia

    en.wikipedia.org/wiki/Category:Theorems_about...

    Pages in category "Theorems about real number sequences" The following 5 pages are in this category, out of 5 total. This list may not reflect recent changes .

  8. Nonstandard analysis - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_analysis

    A real-valued function f on the interval [a, b] is continuous if and only if for every hyperreal x in the interval *[a, b], we have: *f(x) ≅ *f(st(x)). Similarly, Theorem. A real-valued function f is differentiable at the real value x if and only if for every infinitesimal hyperreal number h, the value

  9. List of important publications in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_important...

    The first book on the systematic algebraic solutions of linear and quadratic equations by the Persian scholar Muhammad ibn Mūsā al-Khwārizmī. The book is considered to be the foundation of modern algebra and Islamic mathematics. [10] The word "algebra" itself is derived from the al-Jabr in the title of the book. [11]