Search results
Results from the WOW.Com Content Network
Figure 3: A current amplifier (gray box) driven by a Norton source (i S, R S) and with a resistor load R L. Current divider in blue box at input (R S, R in) reduces the current gain, as does the current divider in green box at the output (R out,R L) The gain of an amplifier generally depends on its source and load terminations.
Since the ladder is a series circuit, the current is the same throughout, and is given by the total voltage divided by the total series resistance (V/R eq). The voltage drop across any one resistor is I×R n , where I is the current calculated above, and R n is the resistance of the resistor in question.
The divider output (V out) appears on the connector adjacent to the cable. A voltage divider can be used to scale down a very high voltage so that it can be measured by a volt meter. The high voltage is applied across the divider, and the divider output—which outputs a lower voltage that is within the meter's input range—is measured by the ...
A logarithmic resistor ladder is an electronic circuit, composed of a series of resistors and switches, designed to create an attenuation from an input to an output signal, where the logarithm of the attenuation ratio is proportional to a binary number that represents the state of the switches.
Power Divider. A typical power divider is shown in figure 13. Ideally, input power would be divided equally between the output ports. Dividers are made up of multiple couplers and, like couplers, may be reversed and used as multiplexers. The drawback is that for a four channel multiplexer, the output consists of only 1/4 the power from each ...
A 1953 paper "Coding by Feedback Methods" [1] describes "decoding networks" that convert numbers (in any base) represented by voltage sources or current sources connected to resistor networks in a "shunt resistor decoding network" (which in base 2 corresponds to the binary-weighted configuration) or in a "ladder resistor decoding network" (which in base 2 corresponds to R–2R configuration ...
A shunt is a device that is designed to provide a low-resistance path for an electrical current in a circuit. It is typically used to divert current away from a system or component in order to prevent overcurrent. Electrical shunts are commonly used in a variety of applications including power distribution systems, electrical measurement ...
Most of the divider resistors will dissipate 1 W, but the two resistors bridged by the second divider stage will only dissipate 0.25 W each. That means the bridged resistors will have a quarter of the self-heating and a quarter of the temperature rise. For the divider to maintain accuracy, the temperature rise from self-heating must be limited.