Search results
Results from the WOW.Com Content Network
A square root of a number x is a number r which, when squared, becomes x: =. Every positive real number has two square roots, one positive and one negative. For example, the two square roots of 25 are 5 and −5. The positive square root is also known as the principal square root, and is denoted with a radical sign:
() is always a perfect square. [10] As it is only a necessary condition but not a sufficient one, it can be used in checking if a given triple of numbers is not a Pythagorean triple. For example, the triples {6, 12, 18} and {1, 8, 9} each pass the test that ( c − a )( c − b )/2 is a perfect square, but neither is a Pythagorean triple.
In number theory, the radical of a positive integer n is defined as the product of the distinct prime numbers dividing n. Each prime factor of n occurs exactly once as a factor of this product: r a d ( n ) = ∏ p ∣ n p prime p {\displaystyle \displaystyle \mathrm {rad} (n)=\prod _{\scriptstyle p\mid n \atop p{\text{ prime}}}p}
The square of an integer may also be called a square number or a perfect square. In algebra, the operation of squaring is often generalized to polynomials, other expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear polynomial x + 1 is the quadratic polynomial (x + 1) 2 = x 2 ...
Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]
Download as PDF; Printable version; In other projects ... move to sidebar hide. A perfect square is an element of algebraic structure that is equal to the square of ...
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula
For example, the smallest solution to = is (32 188 120 829 134 849, 1 819 380 158 564 160), and this is the equation which Frenicle challenged Wallis to solve. [20] Values of n such that the smallest solution of x 2 − n y 2 = 1 {\displaystyle x^{2}-ny^{2}=1} is greater than the smallest solution for any smaller value of n are