Search results
Results from the WOW.Com Content Network
Higher-order programming is a style of computer programming that uses software components, like functions, modules or objects, as values. It is usually instantiated with, or borrowed from, models of computation such as lambda calculus which make heavy use of higher-order functions. A programming language can be considered higher-order if ...
In mathematics higher-order functions are also termed operators or functionals. The differential operator in calculus is a common example, since it maps a function to its derivative, also a function. Higher-order functions should not be confused with other uses of the word "functor" throughout mathematics, see Functor (disambiguation).
[6+4] Cycloaddition is a type of cycloaddition between a six-atom pi system and a four-atom pi system, leading to a ten-membered ring. Because this is a higher-order cycloaddition, issues of periselectivity arise in addition to the usual concerns about regio- and stereoselectivity.
In the area of mathematical logic and computer science known as type theory, a kind is the type of a type constructor or, less commonly, the type of a higher-order type operator. A kind system is essentially a simply typed lambda calculus "one level up", endowed with a primitive type, denoted ∗ {\displaystyle *} and called "type", which is ...
In addition, the overall system cannot act until the component's output settles down to some vicinity of its final state, delaying the overall system response. Formally, knowing the step response of a dynamical system gives information on the stability of such a system, and on its ability to reach one stationary state when starting from another.
Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...
In calculus, an example of a higher-order function is the differential operator /, which returns the derivative of a function . Higher-order functions are closely related to first-class functions in that higher-order functions and first-class functions both allow functions as arguments and results of other functions.
The term "higher-order logic" is commonly used to mean higher-order simple predicate logic. Here "simple" indicates that the underlying type theory is the theory of simple types , also called the simple theory of types .