Search results
Results from the WOW.Com Content Network
The effects of high altitude on humans are mostly the consequences of reduced partial pressure of oxygen in the atmosphere. The medical problems that are direct consequence of high altitude are caused by the low inspired partial pressure of oxygen, which is caused by the reduced atmospheric pressure, and the constant gas fraction of oxygen in ...
Many deaths in high-altitude mountaineering have been caused by the effects of the death zone, either directly by the loss of vital functions or indirectly by poor decisions made under stress (e.g., not turning back in deteriorating conditions, or misreading the climbing route), or physical weakening leading to accidents (e.g., falls).
Altitude sickness, the mildest form being acute mountain sickness (AMS), is a harmful effect of high altitude, caused by rapid exposure to low amounts of oxygen at high elevation. [ 1 ] [ 2 ] [ 3 ] People's bodies can respond to high altitude in different ways.
The 2,891-metre high volcano in West Sumatra erupted on Sunday, spewing gray clouds of ash as high as 3 kilometres (1.9 miles) into the sky. ... Experts say they warned of dangers of climbing ...
High-altitude adaptation in humans is an instance of evolutionary modification in certain human populations, including those of Tibet in Asia, the Andes of the Americas, and Ethiopia in Africa, who have acquired the ability to survive at altitudes above 2,500 meters (8,200 ft). [1]
Jonathan Rohloff is still reeling from the horror of watching his 20-year-old daughter slide to her death off Yosemite's Half Dome. He said his request for more safeguards on the century-old ...
High-altitude pulmonary edema (HAPE) is a life-threatening form of non-cardiogenic pulmonary edema that occurs in otherwise healthy people at altitudes typically above 2,500 meters (8,200 ft). [2] HAPE is a severe presentation of altitude sickness .
It is initially elevated in lowlanders who travel to high altitude, but reduces significantly over time as people acclimatize. [1] [2] In biological anthropology, HVR also refers to human adaptation to environmental stresses resulting from high altitude. [3] In mammals, HVR invokes several physiological mechanisms.