enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dynamical friction - Wikipedia

    en.wikipedia.org/wiki/Dynamical_friction

    The effect of dynamical friction explains why the brightest (more massive) galaxy tends to be found near the center of a galaxy cluster. The effect of the two body collisions slows down the galaxy, and the drag effect is greater the larger the galaxy mass. When the galaxy loses kinetic energy, it moves towards the center of the cluster.

  3. Spacecraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_flight_dynamics

    A space vehicle's flight is determined by application of Newton's second law of motion: =, where F is the vector sum of all forces exerted on the vehicle, m is its current mass, and a is the acceleration vector, the instantaneous rate of change of velocity (v), which in turn is the instantaneous rate of change of displacement.

  4. Friction - Wikipedia

    en.wikipedia.org/wiki/Friction

    Fluid friction describes the friction between layers of a viscous fluid that are moving relative to each other. [7] [8] Lubricated friction is a case of fluid friction where a lubricant fluid separates two solid surfaces. [9] [10] [11] Skin friction is a component of drag, the force resisting the motion of a fluid across the surface of a body.

  5. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_existence...

    In mathematics, the Navier–Stokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...

  6. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    In physics, specifically classical mechanics, the three-body problem is to take the initial positions and velocities (or momenta) of three point masses that orbit each other in space and calculate their subsequent trajectories using Newton's laws of motion and Newton's law of universal gravitation. [1]

  7. Force field (physics) - Wikipedia

    en.wikipedia.org/wiki/Force_field_(physics)

    In physics, a force field is a vector field corresponding with a non-contact force acting on a particle at various positions in space. Specifically, a force field is a vector field F {\displaystyle \mathbf {F} } , where F ( r ) {\displaystyle \mathbf {F} (\mathbf {r} )} is the force that a particle would feel if it were at the position r ...

  8. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    The motion of the lighter body (called the "particle" below) can then be determined from the Schwarzschild solution; the motion is a geodesic ("shortest path between two points") in the curved space-time. Such geodesic solutions account for the anomalous precession of the planet Mercury, which is a key piece of evidence supporting the theory of ...

  9. Birkhoff's theorem (relativity) - Wikipedia

    en.wikipedia.org/wiki/Birkhoff's_theorem...

    In general relativity, Birkhoff's theorem states that any spherically symmetric solution of the vacuum field equations must be static and asymptotically flat. This means that the exterior solution (i.e. the spacetime outside of a spherical, nonrotating, gravitating body) must be given by the Schwarzschild metric. The converse of the theorem is ...