enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ramanujan's sum - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_sum

    where the a k ∈ C, is called a Ramanujan expansion [12] of f (n). Ramanujan found expansions of some of the well-known functions of number theory. All of these results are proved in an "elementary" manner (i.e. only using formal manipulations of series and the simplest results about convergence).

  3. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The multiplicative inverse of its generating function is the Euler function; by Euler's pentagonal number theorem this function is an alternating sum of pentagonal number powers of its argument. Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences.

  4. Elementary Number Theory, Group Theory and Ramanujan Graphs

    en.wikipedia.org/wiki/Elementary_Number_Theory...

    Its authors have divided Elementary Number Theory, Group Theory and Ramanujan Graphs into four chapters. The first of these provides background in graph theory, including material on the girth of graphs (the length of the shortest cycle), on graph coloring, and on the use of the probabilistic method to prove the existence of graphs for which both the girth and the number of colors needed are ...

  5. Ramanujan sum - Wikipedia

    en.wikipedia.org/?title=Ramanujan_sum&redirect=no

    Download as PDF; Printable version; From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Ramanujan's sum; Retrieved from " ...

  6. Hardy–Ramanujan–Littlewood circle method - Wikipedia

    en.wikipedia.org/wiki/Hardy–Ramanujan...

    Later, I. M. Vinogradov extended the technique, replacing the exponential sum formulation f(z) with a finite Fourier series, so that the relevant integral I n is a Fourier coefficient. Vinogradov applied finite sums to Waring's problem in 1926, and the general trigonometric sum method became known as "the circle method of Hardy, Littlewood and ...

  7. Srinivasa Ramanujan - Wikipedia

    en.wikipedia.org/wiki/Srinivasa_Ramanujan

    Srinivasa Ramanujan Aiyangar [a] (22 December 1887 – 26 April 1920) was an Indian mathematician.Often regarded as one of the greatest mathematicians of all time, though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis, number theory, infinite series, and continued fractions, including solutions to mathematical problems then ...

  8. Rogers–Ramanujan continued fraction - Wikipedia

    en.wikipedia.org/wiki/Rogers–Ramanujan...

    The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument.

  9. Ramanujan–Nagell equation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan–Nagell_equation

    In mathematics, in the field of number theory, the Ramanujan–Nagell equation is an equation between a square number and a number that is seven less than a power of two. It is an example of an exponential Diophantine equation , an equation to be solved in integers where one of the variables appears as an exponent .

  1. Related searches ramanujan sum -1/12 solution pdf book download sites for free

    ramanujan sum -1/12 solution pdf book download sites for free music