enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Ranknullity_theorem

    Rank–nullity theorem. The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...

  3. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    A matrix that has rank min(m, n) is said to have full rank; otherwise, the matrix is rank deficient. Only a zero matrix has rank zero. f is injective (or "one-to-one") if and only if A has rank n (in this case, we say that A has full column rank). f is surjective (or "onto") if and only if A has rank m (in this case, we say that A has full row ...

  4. Category:Theorems in linear algebra - Wikipedia

    en.wikipedia.org/wiki/Category:Theorems_in...

    Download as PDF; Printable version; In other projects Wikidata item; Appearance. move to sidebar hide. ... Rank–nullity theorem; Rouché–Capelli theorem; S. Schur ...

  5. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The dimension of the row space is called the rank of the matrix. This is the same as the maximum number of linearly independent rows that can be chosen from the matrix, or equivalently the number of pivots. For example, the 3 × 3 matrix in the example above has rank two. [9] The rank of a matrix is also equal to the dimension of the column space.

  6. Wikipedia:Reference desk/Archives/Mathematics/2017 March 27

    en.wikipedia.org/wiki/Wikipedia:Reference_desk/...

    Use the given information to find the rank of the linear transformation T where T : V → W. The null space of T : P 5 → P 5 is P 5. I used the rank–nullity theorem and produced the following: rank(T) + nullity(T) = dim(V) nullity(T) = 6, dim(V) = 6 rank(T) + 6 = 6 rank(T) = 0. Is this result correct? I feel like I erred somewhere.

  7. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    In general, a square complex matrix A is similar to a block diagonal matrix = [] where each block J i is a square matrix of the form = []. So there exists an invertible matrix P such that P −1 AP = J is such that the only non-zero entries of J are on the diagonal and the superdiagonal.

  8. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Principal axis theorem (linear algebra) Rank–nullity theorem (linear algebra) Rouché–Capelli theorem (Linear algebra) Sinkhorn's theorem (matrix theory) Specht's theorem (matrix theory) Spectral theorem (linear algebra, functional analysis) Sylvester's determinant theorem (determinants) Sylvester's law of inertia (quadratic forms)

  9. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    In the case where V is finite-dimensional, this implies the rank–nullity theorem: ⁡ (⁡) + ⁡ (⁡) = ⁡ (). where the term rank refers to the dimension of the image of L, ⁡ (⁡), while nullity refers to the dimension of the kernel of L, ⁡ (⁡). [4] That is, ⁡ = ⁡ (⁡) ⁡ = ⁡ (⁡), so that the rank–nullity theorem can be ...