Search results
Results from the WOW.Com Content Network
A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.
The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. [1] An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence.
Printable version; In other projects Wikidata item; Appearance. move to sidebar hide ... 2, 1, 1, 2, 1, 2, 2, 1, ... The n th term describes the length of the n th ...
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
In mathematics, the nth-term test for divergence [1] is a simple test for the divergence of an infinite series: If or if the limit does not exist, then = diverges. Many authors do not name this test or give it a shorter name. [2]
where is the number of terms in the progression and is the common difference between terms. The formula is essentially the same as the formula for the standard deviation of a discrete uniform distribution , interpreting the arithmetic progression as a set of equally probable outcomes.
This gnomonic technique also provides a mathematical proof that the sum of the first n odd numbers is n 2; the figure illustrates 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 = 64 = 8 2. There is a similar gnomon with centered hexagonal numbers adding up to make cubes of each integer number.
For the corresponding definition in terms of spheres, define the sum + of maps ,: to be composed with h, where is the map from to the wedge sum of two n-spheres that collapses the equator and h is the map from the wedge sum of two n-spheres to X that is defined to be f on the first sphere and g on the second.