Search results
Results from the WOW.Com Content Network
Primordial germ cells are among the first lineages that are established in development [1] and they are the precursors for gametes. [2] It is thought that the process of primordial germ cell migration itself has been conserved rather than the specific mechanisms within it, as chemoattraction and repulsion seem to have been borrowed from blood cells, neurones, and the mesoderm. [1]
Cleavage in most animals segregates cells containing germ plasm from other cells. The germ plasm effectively turns off gene expression to render the genome of the cell inert. Cells expressing germ plasm become primordial germ cells (PGCs) which will then give rise to the gametes. The germ line development in mammals, on the other hand, occurs ...
Germ cell specification begins during cleavage in many animals or in the epiblast during gastrulation in birds and mammals. After transport, involving passive movements and active migration, germ cells arrive at the developing gonads. In humans, sexual differentiation starts approximately 6 weeks after conception.
[5] [14] This period consists of the primordial germ cells (PGC), the initial cells that commence germ cell development in the embryo, [16] and the gonocytes, which after being differentiated from PGCs, undergo regulated proliferation, differentiation, migration and apoptosis to produce the SSCs.
Cormlets of Watsonia meriana, an example of apomixis Clathria tuberosa, an example of a sponge that can grow indefinitely from somatic tissue and reconstitute itself from totipotent separated somatic cells. In biology and genetics, the germline is the population of a multicellular organism's cells that develop into germ cells.
Also, primordial germ cells are first found in the wall of the yolk sac before primordial germ cell migration. After the fourth week of development, the growing embryonic disc becomes much larger than the yolk sac and eventually involutes before birth.
As the syncytiotrophoblast starts to penetrate the uterine wall, the inner cell mass (embryoblast) also develops. The inner cell mass is the source of embryonic stem cells, which are pluripotent and can develop into any one of the three germ layer cells, and which have the potency to give rise to all the tissues and organs.
While the cuboidal hypoblast cells delaminate ventrally, away from the embryonic pole, to line the blastocoele, the remaining cells of the inner cell mass, situated between the hypoblast and the polar trophoblast, become the epiblast and comprise columnar cells. In the mouse, primordial germ cells are specified from epiblast cells. [4]