Search results
Results from the WOW.Com Content Network
α-Amylase is an enzyme (EC 3.2.1.1; systematic name 4-α-D-glucan glucanohydrolase) that hydrolyses α bonds of large, α-linked polysaccharides, such as starch and glycogen, yielding shorter chains thereof, dextrins, and maltose, through the following biochemical process: [2]
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Amylase may be measured in other body fluids, including urine and peritoneal fluid. A January 2007 study from Washington University in St. Louis suggests that saliva tests of the enzyme could be used to indicate sleep deficits , as the enzyme increases its activity in correlation with the length of time a subject has been deprived of sleep.
β-Amylase (EC 3.2.1.2, saccharogen amylase, glycogenase) is an enzyme with the systematic name 4-α-D-glucan maltohydrolase. [ 2 ] [ 3 ] [ 4 ] It catalyses the following reaction: Hydrolysis of (1→4)-α- D -glucosidic linkages in polysaccharides so as to remove successive maltose units from the non-reducing ends of the chains
Simplified control circuit of human thermoregulation. [8]The core temperature of a human is regulated and stabilized primarily by the hypothalamus, a region of the brain linking the endocrine system to the nervous system, [9] and more specifically by the anterior hypothalamic nucleus and the adjacent preoptic area regions of the hypothalamus.
As the temperature is raised, the double strand begins to dissociate leading to a rise in the absorbance intensity, hyperchromicity. The temperature at which 50% of DNA is denatured is known as the melting temperature. Measurement of melting temperature can help us predict species by just studying the melting temperature.
Also of importance is the presence in saliva of the digestive enzymes amylase and lipase. Amylase starts to work on the starch in carbohydrates, breaking it down into the simple sugars of maltose and dextrose that can be further broken down in the small intestine. Saliva in the mouth can account for 30% of this initial starch digestion.
The human body is composed of approximately: 64% water, 20% protein, 10% fat, 1% carbohydrate, 5% minerals. [1] The decomposition of soft tissue is characterized by the breakdown of these macromolecules, and thus a large proportion of the decomposition products should reflect the amount of protein and fat content initially present in the body. [4]