Search results
Results from the WOW.Com Content Network
The pressure or presence of other players and external implications can mean that the game's formal model cannot necessarily predict what a real person will choose. According to Colin Camerer, an American behavioral economist, Player 2 "rejects offers of less than 20 percent of X about half the time, even though they end up with nothing." [12]
When they are lower than the final value, the phenomenon is called "undershoot". A circuit is designed to minimize rise time while containing distortion of the signal within acceptable limits. Overshoot represents a distortion of the signal. In circuit design, the goals of minimizing overshoot and of decreasing circuit rise time can conflict.
For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step response minus one. The percentage overshoot (PO) is related to damping ratio (ζ) by:
This closed-loop gain is of the same form as the open-loop gain: a one-pole filter. Its step response is of the same form: an exponential decay toward the new equilibrium value. But the time constant of the closed-loop step function is τ / (1 + β A 0), so it is faster than the forward amplifier's response by a factor of 1 + β A 0:
In an increasing system, the time constant is the time for the system's step response to reach 1 − 1 / e ≈ 63.2% of its final (asymptotic) value (say from a step increase). In radioactive decay the time constant is related to the decay constant ( λ ), and it represents both the mean lifetime of a decaying system (such as an atom) before it ...
Similarly, for pulse (10001000) the duty cycle will be 25% because the pulse remains high only for 1/4 of the period and remains low for 3/4 of the period. Electrical motors typically use less than a 100% duty cycle. For example, if a motor runs for one out of 100 seconds, or 1/100 of the time, then, its duty cycle is 1/100, or 1 percent. [10]
For applications in control theory, according to Levine (1996, p. 158), rise time is defined as "the time required for the response to rise from x% to y% of its final value", with 0% to 100% rise time common for underdamped second order systems, 5% to 95% for critically damped and 10% to 90% for overdamped ones. [6]
The statement that the first step is the slow step actually means that the first step in the reverse direction is slower than the second step in the forward direction, so that almost all NO 3 is consumed by reaction with CO and not with NO. That is, r −1 ≪ r 2, so that r 1 − r 2 ≈ 0.