enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Maxwell's equations on a plaque on his statue in Edinburgh. Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits.

  3. Gaussian units - Wikipedia

    en.wikipedia.org/wiki/Gaussian_units

    One difference between the Gaussian and SI systems is in the factor 4π in various formulas that relate the quantities that they define. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the Biot–Savart law – do have a factor of 4π attached to the r 2.

  4. Electromagnetic tensor - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_tensor

    SI units for Maxwell's equations and the particle physicist's sign convention for the signature of Minkowski space (+ − − −), will be used throughout this article. Relationship with the classical fields

  5. Heaviside–Lorentz units - Wikipedia

    en.wikipedia.org/wiki/Heaviside–Lorentz_units

    The commonly used set of units is the called the SI, which defines two constants, the vacuum permittivity (ε 0) and the vacuum permeability (μ 0). These can be used to convert SI units to their corresponding Heaviside–Lorentz values, as detailed below. For example, SI charge is √ ε 0 L 3 M / T 2.

  6. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.

  7. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    In fact, Maxwell's equations were crucial in the historical development of special relativity. However, in the usual formulation of Maxwell's equations, their consistency with special relativity is not obvious; it can only be proven by a laborious calculation. For example, consider a conductor moving in the field of a magnet. [8]

  8. Inhomogeneous electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Inhomogeneous...

    Maxwell's equations can directly give inhomogeneous wave equations for the electric field E and magnetic field B. [1] Substituting Gauss's law for electricity and Ampère's law into the curl of Faraday's law of induction, and using the curl of the curl identity ∇ × (∇ × X) = ∇(∇ ⋅ X) − ∇ 2 X (The last term in the right side is the vector Laplacian, not Laplacian applied on ...

  9. Maxwell (unit) - Wikipedia

    en.wikipedia.org/wiki/Maxwell_(unit)

    The maxwell is a non-SI unit. [8] 1 maxwell = 1 gauss × 2. That is, one maxwell is the total flux across a surface of one square centimetre perpendicular to a magnetic field of strength one gauss. The weber is the related SI unit of magnetic flux, which was defined in 1946. [9] 1 maxwell ≘ 10 −4 tesla × (10 −2 metre) 2 = 10 −8 weber