Search results
Results from the WOW.Com Content Network
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
1925: Fisher published the first edition of Statistical Methods for Research Workers, which defined the statistical significance test and made it a mainstream method of analysis for much of experimental science. The text was devoid of proofs and weak on explanations, but was filled with real examples.
Testing a hypothesis suggested by the data can very easily result in false positives (type I errors). If one looks long enough and in enough different places, eventually data can be found to support any hypothesis. Yet, these positive data do not by themselves constitute evidence that the hypothesis is correct. The negative test data that were ...
In addition, the concept of power is used to make comparisons between different statistical testing procedures: for example, between a parametric test and a nonparametric test of the same hypothesis. Tests may have the same size , and hence the same false positive rates, but different ability to detect true effects.
Much of his pioneering work dealt with agricultural applications of statistical methods. As a mundane example, he described how to test the lady tasting tea hypothesis, that a certain lady could distinguish by flavour alone whether the milk or the tea was first placed in the cup. These methods have been broadly adapted in biological ...
In a randomized experiment, the method of randomization specified in the experimental protocol guides the statistical analysis, which is usually specified also by the experimental protocol. [18] Without a statistical model that reflects an objective randomization, the statistical analysis relies on a subjective model. [ 18 ]
The choice of how to group participants depends on the research hypothesis and on how the participants are sampled.In a typical experimental study, there will be at least one "experimental" condition (e.g., "treatment") and one "control" condition ("no treatment"), but the appropriate method of grouping may depend on factors such as the duration of measurement phase and participant ...
The consistent application by statisticians of Neyman and Pearson's convention of representing "the hypothesis to be tested" (or "the hypothesis to be nullified") with the expression H 0 has led to circumstances where many understand the term "the null hypothesis" as meaning "the nil hypothesis" – a statement that the results in question have ...