Search results
Results from the WOW.Com Content Network
The geocentric altitude is a type of altitude defined as the difference between the two aforementioned quantities: h ′ = R − R 0; [3] it is not to be confused for the geodetic altitude. Conversions between ECEF and geodetic coordinates (latitude and longitude) are discussed at geographic coordinate conversion .
In geodesy, geographic coordinate conversion is defined as translation among different coordinate formats or map projections all referenced to the same geodetic datum. [1] A geographic coordinate transformation is a translation among different geodetic datums. Both geographic coordinate conversion and transformation will be considered in this ...
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).
They are also known as local ellipsoidal system, [1] [2] local geodetic coordinate system, [3] local vertical, local horizontal coordinates (LVLH), or topocentric coordinates. It consists of three coordinates : one represents the position along the northern axis, one along the local eastern axis, and one represents the vertical position .
A geodetic datum or geodetic system (also: geodetic reference datum, geodetic reference system, or geodetic reference frame, or terrestrial reference frame) is a global datum reference or reference frame for unambiguously representing the position of locations on Earth by means of either geodetic coordinates (and related vertical coordinates) or geocentric coordinates. [1]
The World Geodetic System (WGS) is a standard used in cartography, geodesy, and satellite navigation including GPS.The current version, WGS 84, defines an Earth-centered, Earth-fixed coordinate system and a geodetic datum, and also describes the associated Earth Gravitational Model (EGM) and World Magnetic Model (WMM).
Note: solving for ′ returns the resultant angle in the first quadrant (< <). To find , one must refer to the original Cartesian coordinate, determine the quadrant in which lies (for example, (3,−3) [Cartesian] lies in QIV), then use the following to solve for :
Convert from geodetic coordinates to geocentric coordinates: Calculation of x, y and z relative to the reference ellipsoid of surveying; 7-parameter transformation (where x, y and z almost always change by a few hundred metres at most, and distances by a few mm per km).