Search results
Results from the WOW.Com Content Network
A general momentum equation is obtained when the conservation relation is applied to momentum. When the intensive property φ is considered as the mass flux (also momentum density), that is, the product of mass density and flow velocity ρu, by substitution into the general continuity equation:
Download as PDF; Printable version; In other projects Wikidata item ... Pages in category "Polysemy" The following 8 pages are in this category, out of 8 total. This ...
If the Lagrangian L does not depend on some coordinate q i, then it follows from the Euler–Lagrange equations that the corresponding generalized momentum will be a conserved quantity, because the time derivative is zero implying the momentum is a constant of the motion;
Mathematically, the duality between position and momentum is an example of Pontryagin duality. In particular, if a function is given in position space, f(r), then its Fourier transform obtains the function in momentum space, φ(p). Conversely, the inverse Fourier transform of a momentum space function is a position space function.
Calculating the Minkowski norm squared of the four-momentum gives a Lorentz invariant quantity equal (up to factors of the speed of light c) to the square of the particle's proper mass: = = = + | | = where = is the metric tensor of special relativity with metric signature for definiteness chosen to be (–1, 1, 1, 1).
At instant 1, a mass dm with velocity u is about to collide with the main body of mass m and velocity v. After a time dt, at instant 2, both particles move as one body with velocity v + dv. The following derivation is for a body that is gaining mass . A body of time-varying mass m moves at a velocity v at an initial time t.
If the body is at rest (v = 0), i.e. in its center-of-momentum frame (p = 0), we have E = E 0 and m = m 0; thus the energy–momentum relation and both forms of the mass–energy relation (mentioned above) all become the same. A more general form of relation holds for general relativity.
The basic tool required for the derivation of the RANS equations from the instantaneous Navier–Stokes equations is the Reynolds decomposition.Reynolds decomposition refers to separation of the flow variable (like velocity ) into the mean (time-averaged) component (¯) and the fluctuating component (′).