Search results
Results from the WOW.Com Content Network
Nucleic acids consist of a chain of linked units called nucleotides. Each nucleotide consists of three subunits: a phosphate group and a sugar (ribose in the case of RNA, deoxyribose in DNA) make up the backbone of the nucleic acid strand, and attached to the sugar is one of a set of nucleobases.
DNA sequencing methods currently under development include reading the sequence as a DNA strand transits through nanopores (a method that is now commercial but subsequent generations such as solid-state nanopores are still in development), [138] [139] and microscopy-based techniques, such as atomic force microscopy or transmission electron ...
Pages in category "Repetitive DNA sequences" The following 42 pages are in this category, out of 42 total. This list may not reflect recent changes. ...
Many LCRs are concentrated in "hotspots", such as the 17p11-12 region, 27% of which is composed of LCR sequence. NAHR and non-homologous end joining (NHEJ) within this region are responsible for a wide range of disorders, including Charcot–Marie–Tooth syndrome type 1A , [ 5 ] hereditary neuropathy with liability to pressure palsies , [ 5 ...
The term "repeated sequence" was first used by Roy John Britten and D. E. Kohne in 1968; they found out that more than half of the eukaryotic genomes were repetitive DNA through their experiments on reassociation of DNA. [5] Although the repetitive DNA sequences were conserved and ubiquitous, their biological role was yet unknown.
Sequencing technologies with a different approach than second-generation platforms were first described as "third-generation" in 2008–2009. [4]There are several companies currently at the heart of third generation sequencing technology development, namely, Pacific Biosciences, Oxford Nanopore Technology, Quantapore (CA-USA), and Stratos (WA-USA).
The AB370A was able to sequence 96 samples simultaneously, 500 kilobases per day, and reaching read lengths up to 600 bases. This was the beginning of the "first generation" of DNA sequencers, [2] [3] which implemented Sanger sequencing, fluorescent dideoxy nucleotides and polyacrylamide gel sandwiched between glass plates - slab gels. The next ...
DNA was first sequenced in 1977. The first free-living organism to have its genome completely sequenced was the bacterium Haemophilus influenzae , in 1995. In 1996 Saccharomyces cerevisiae (baker's yeast) was the first eukaryote genome sequence to be released and in 1998 the first genome sequence for a multicellular eukaryote, Caenorhabditis ...