Search results
Results from the WOW.Com Content Network
The stiffness, , of a body is a measure of the resistance offered by an elastic body to deformation. For an elastic body with a single degree of freedom (DOF) (for example, stretching or compression of a rod), the stiffness is defined as k = F δ {\displaystyle k={\frac {F}{\delta }}} where,
Specific modulus is a materials property consisting of the elastic modulus per mass density of a material. It is also known as the stiffness to weight ratio or specific stiffness. High specific modulus materials find wide application in aerospace applications where minimum structural weight is required.
When quantifying limb stiffness, one cannot simply sum the individual joint stiffnesses due to the nonlinearities of the multi-joint system. A few of the specific methods for calculating limb stiffness can be seen below: [7] Vertical Stiffness (k vert) is a quantitative measure of leg stiffness that can be defined by the equations below: [7]
The movement of a body, or link, is studied using geometry so the link is considered to be rigid. [1] The connections between links are modeled as providing ideal movement, pure rotation or sliding for example, and are called joints. A linkage modeled as a network of rigid links and ideal joints is called a kinematic chain.
Geometric stiffness: a global characteristic of the body that depends on its shape, and not only on the local properties of the material; for instance, an I-beam has a higher bending stiffness than a rod of the same material for a given mass per length; Hardness: relative resistance of the material's surface to penetration by a harder body;
The structure’s unknown displacements and forces can then be determined by solving this equation. The direct stiffness method forms the basis for most commercial and free source finite element software. The direct stiffness method originated in the field of aerospace. Researchers looked at various approaches for analysis of complex airplane ...
In the context to structural analysis, a structure refers to a body or system of connected parts used to support a load. Important examples related to Civil Engineering include buildings, bridges, and towers; and in other branches of engineering, ship and aircraft frames, tanks, pressure vessels, mechanical systems, and electrical supporting structures are important.
In structural engineering, the flexibility method, also called the method of consistent deformations, is the traditional method for computing member forces and displacements in structural systems. Its modern version formulated in terms of the members' flexibility matrices also has the name the matrix force method due to its use of member forces ...