Search results
Results from the WOW.Com Content Network
The Hall–Héroult process is the major industrial process for smelting aluminium. It involves dissolving aluminium oxide (alumina) (obtained most often from bauxite , aluminium 's chief ore, through the Bayer process ) in molten cryolite and electrolyzing the molten salt bath, typically in a purpose-built cell.
Atomic layer deposition (ALD) is a thin-film deposition technique based on the sequential use of a gas-phase chemical process; it is a subclass of chemical vapour deposition. The majority of ALD reactions use two chemicals called precursors (also called "reactants").
The Bayer process is the principal industrial means of refining bauxite to produce alumina (aluminium oxide) and was developed by Carl Josef Bayer. Bauxite, the most important ore of aluminium , contains only 30–60% aluminium oxide (Al 2 O 3 ), the rest being a mixture of silica , various iron oxides , and titanium dioxide . [ 1 ]
The electrolysis can be done on a molten metal oxide (smelt electrolysis) which is used for example to produce aluminium from aluminium oxide via the Hall-Hérault process. Electrolysis can be used as a final refining stage in pyrometallurgical metal production (electrorefining) and it is also used for reduction of a metal from an aqueous metal ...
Primary aluminium smelting is the process of extracting aluminium from aluminium oxide (also known as alumina). The process takes place in electrolytic cells that are known as pots. The pots are made up of steel shells with two linings, an outer insulating or refractory lining and an inner carbon lining that acts as the cathode of the ...
The process produces a quantity of fluoride waste: perfluorocarbons and hydrogen fluoride as gases, and sodium and aluminium fluorides and unused cryolite as particulates. This can be as small as 0.5 kg per tonne of aluminium in the best plants in 2007, up to 4 kg per tonne of aluminium in older designs in 1974.
Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polymers. PVD is characterized by a process in which the material transitions from a condensed phase to a ...
This aluminium oxide is dissolved at a temperature of about 960 °C (1,760 °F) in molten cryolite. Next, this molten substance can yield metallic aluminium by passing an electric current through it in the process of electrolysis, which is called the Hall–Héroult process , named after its American and French discoverers.