enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    In the ultrashort time limit, in the order of the diffusion time a 2 /D, where a is the particle radius, the diffusion is described by the Langevin equation. At a longer time, the Langevin equation merges into the Stokes–Einstein equation. The latter is appropriate for the condition of the diluted solution, where long-range diffusion is ...

  3. Diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Diffusion_equation

    where ϕ(r, t) is the density of the diffusing material at location r and time t and D(ϕ, r) is the collective diffusion coefficient for density ϕ at location r; and ∇ represents the vector differential operator del. If the diffusion coefficient depends on the density then the equation is nonlinear, otherwise it is linear.

  4. Diffusion map - Wikipedia

    en.wikipedia.org/wiki/Diffusion_map

    The diffusion distance at time between two points can be measured as the similarity of two points in the observation space with the connectivity between them. It is ...

  5. Molecular diffusion - Wikipedia

    en.wikipedia.org/wiki/Molecular_diffusion

    Before this point in time, a gradual variation in the concentration of A occurs along an axis, designated x, which joins the original compartments. This variation, expressed mathematically as -dC A /dx, where C A is the concentration of A. The negative sign arises because the concentration of A decreases as the distance x increases.

  6. Diffusion - Wikipedia

    en.wikipedia.org/wiki/Diffusion

    The diffusion coefficient is the coefficient in the Fick's first law = /, where J is the diffusion flux (amount of substance) per unit area per unit time, n (for ideal mixtures) is the concentration, x is the position [length].

  7. Boltzmann–Matano analysis - Wikipedia

    en.wikipedia.org/wiki/Boltzmann–Matano_analysis

    Specifically, Matano proved that the diffusion rate of A atoms into a B-atom crystal lattice is a function of the amount of A atoms already in the B lattice. The importance of the classic Boltzmann–Matano method consists in the ability to extract diffusivities from concentration–distance data.

  8. Rayleigh number - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_number

    The time scale for thermal diffusion across a distance is /, where is the thermal diffusivity. Thus the Rayleigh number Ra is Thus the Rayleigh number Ra is R a = l 2 / α η / Δ ρ l g = Δ ρ l 3 g η α = ρ β Δ T l 3 g η α {\displaystyle \mathrm {Ra} ={\frac {l^{2}/\alpha }{\eta /\Delta \rho lg}}={\frac {\Delta \rho l^{3}g}{\eta \alpha ...

  9. Fourier number - Wikipedia

    en.wikipedia.org/wiki/Fourier_number

    The Fourier number can be derived by nondimensionalizing the time-dependent diffusion equation.As an example, consider a rod of length that is being heated from an initial temperature by imposing a heat source of temperature > at time = and position = (with along the axis of the rod).