Search results
Results from the WOW.Com Content Network
The efficiency of internal combustion engines depends on several factors, the most important of which is the expansion ratio. For any heat engine the work which can be extracted from it is proportional to the difference between the starting pressure and the ending pressure during the expansion phase.
The first four aliphatic alcohols (methanol, ethanol, propanol, and butanol) are of interest as fuels because they can be synthesized chemically or biologically, and they have characteristics which allow them to be used in internal combustion engines. The general chemical formula for alcohol fuel is C n H 2n+1 OH.
The fuel in an engine has to be vaporized before it will burn. Insufficient vaporization is a known problem with alcohol fuels during cold starts in cold weather. As the heat of vaporization of butanol is less than half of that of ethanol, an engine running on butanol should be easier to start in cold weather than one running on ethanol or ...
Since the heat of combustion of these elements is known, the heating value can be calculated using Dulong's Formula: HHV [kJ/g]= 33.87m C + 122.3(m H - m O ÷ 8) + 9.4m S where m C , m H , m O , m N , and m S are the contents of carbon, hydrogen, oxygen, nitrogen, and sulfur on any (wet, dry or ash free) basis, respectively.
Combustion efficiency refers to the effectiveness of the burning process in converting fuel into heat energy. It is measured by the proportion of fuel that is efficiently burned and converted into useful heat, while minimizing the emissions of pollutants. [1] [2] Specifically, it may refer to: fuel efficiency; engine efficiency
However, a real diesel engine will be more efficient overall since it will have the ability to operate at higher compression ratios. If a petrol engine were to have the same compression ratio, then knocking (self-ignition) would occur and this would severely reduce the efficiency, whereas in a diesel engine, the self ignition is the desired ...
Volumetric efficiency (VE) in internal combustion engine engineering is defined as the ratio of the equivalent volume of the fresh air drawn into the cylinder during the intake stroke (if the gases were at the reference condition for density) to the volume of the cylinder itself.
Fuel efficiency is dependent on many parameters of a vehicle, including its engine parameters, aerodynamic drag, weight, AC usage, fuel and rolling resistance. There have been advances in all areas of vehicle design in recent decades. Fuel efficiency of vehicles can also be improved by careful maintenance and driving habits. [3]