enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    Solving quintic equations in terms of radicals (nth roots) was a major problem in algebra from the 16th century, when cubic and quartic equations were solved, until the first half of the 19th century, when the impossibility of such a general solution was proved with the Abel–Ruffini theorem.

  3. Thomae's formula - Wikipedia

    en.wikipedia.org/wiki/Thomae's_formula

    In 1824, the Abel–Ruffini theorem established that polynomial equations of a degree of five or higher could have no solutions in radicals. It became clear to mathematicians since then that one needed to go beyond radicals in order to express the solutions to equations of the fifth and higher degrees.

  4. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    Abel–Ruffini theorem refers also to the slightly stronger result that there are equations of degree five and higher that cannot be solved by radicals. This does not follow from Abel's statement of the theorem, but is a corollary of his proof, as his proof is based on the fact that some polynomials in the coefficients of the equation are not ...

  5. Theory of equations - Wikipedia

    en.wikipedia.org/wiki/Theory_of_equations

    The case of higher degrees remained open until the 19th century, when Paolo Ruffini gave an incomplete proof in 1799 that some fifth degree equations cannot be solved in radicals followed by Niels Henrik Abel's complete proof in 1824 (now known as the Abel–Ruffini theorem).

  6. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas are frequently used with polynomials with coefficients in any integral domain R.Then, the quotients / belong to the field of fractions of R (and possibly are in R itself if happens to be invertible in R) and the roots are taken in an algebraically closed extension.

  7. Cyclotomic polynomial - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_polynomial

    The degree of , or in other words ... By Fermat's little theorem, the multiplicative order of b is a divisor of p − 1, and thus smaller than n. g is square-free. In ...

  8. Approximation theory - Wikipedia

    en.wikipedia.org/wiki/Approximation_theory

    It is seen that there exists an N th-degree polynomial that can interpolate N+1 points in a curve. That such a polynomial is always optimal is asserted by the equioscillation theorem. It is possible to make contrived functions f(x) for which no such polynomial exists, but these occur rarely in practice.

  9. Birch's theorem - Wikipedia

    en.wikipedia.org/wiki/Birch's_theorem

    The proof of the theorem is by induction over the maximal degree of the forms f 1, ..., f k.Essential to the proof is a special case, which can be proved by an application of the Hardy–Littlewood circle method, of the theorem which states that if n is sufficiently large and r is odd, then the equation