enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss map - Wikipedia

    en.wikipedia.org/wiki/Gauss_Map

    In differential geometry, the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the surface at that point. Namely, given a surface X in Euclidean space R 3 , the Gauss map is a map N : X → S 2 (where S 2 is the unit sphere ) such that for each p in X , the function value N ( p ) is ...

  3. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The definition utilizes the local representation of a surface via maps between Euclidean spaces. There is a standard notion of smoothness for such maps; a map between two open subsets of Euclidean space is smooth if its partial derivatives of every order exist at every point of the domain. [6] [7] [8]

  4. Osserman–Xavier–Fujimoto theorem - Wikipedia

    en.wikipedia.org/wiki/Osserman–Xavier...

    In the mathematical field of differential geometry, the Osserman–Xavier–Fujimoto theorem concerns the Gauss maps of minimal surfaces in the three-dimensional Euclidean space. It says that if a minimal surface is immersed and geodesically complete , then the image of the Gauss map either consists of a single point (so that the surface is a ...

  5. Gerhard Huisken - Wikipedia

    en.wikipedia.org/wiki/Gerhard_Huisken

    In analogy with Hamilton's result, Huisken's results can be viewed as providing proofs that any smooth closed convex hypersurface of Euclidean space is diffeomorphic to a sphere, and is the boundary of a region which is diffeomorphic to a ball. However, both of these results are elementary via analysis of the Gauss map.

  6. Riemannian connection on a surface - Wikipedia

    en.wikipedia.org/wiki/Riemannian_connection_on_a...

    Moreover, the Gauss map of M into S 2 induces a natural map between the associated frame bundles which is equivariant for the actions of SO(2). [29] Cartan's idea of introducing the frame bundle as a central object was the natural culmination of the theory of moving frames, developed in France by Darboux and Goursat.

  7. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    Gaussian curvature is an intrinsic measure of curvature, meaning that it could in principle be measured by a 2-dimensional being living entirely within the surface, because it depends only on distances that are measured “within” or along the surface, not on the way it is isometrically embedded in Euclidean space.

  8. Non-Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Non-Euclidean_geometry

    In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry.As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement.

  9. Theorema Egregium - Wikipedia

    en.wikipedia.org/wiki/Theorema_egregium

    Gauss's original statement of the Theorema Egregium, translated from Latin into English. The theorem is "remarkable" because the definition of Gaussian curvature makes ample reference to the specific way the surface is embedded in 3-dimensional space, and it is quite surprising that the result does not depend on its embedding.