enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    The constrained-optimization problem (COP) is a significant generalization of the classic constraint-satisfaction problem (CSP) model. [1] COP is a CSP that includes an objective function to be optimized. Many algorithms are used to handle the optimization part.

  3. Chance constrained programming - Wikipedia

    en.wikipedia.org/wiki/Chance_constrained_programming

    A general chance constrained optimization problem can be formulated as follows: (,,) (,,) =, {(,,)}Here, is the objective function, represents the equality constraints, represents the inequality constraints, represents the state variables, represents the control variables, represents the uncertain parameters, and is the confidence level.

  4. Test functions for optimization - Wikipedia

    en.wikipedia.org/.../Test_functions_for_optimization

    Here some test functions are presented with the aim of giving an idea about the different situations that optimization algorithms have to face when coping with these kinds of problems. In the first part, some objective functions for single-objective optimization cases are presented.

  5. Gurobi Optimizer - Wikipedia

    en.wikipedia.org/wiki/Gurobi_Optimizer

    Gurobi Optimizer is a prescriptive analytics platform and a decision-making technology developed by Gurobi Optimization, LLC. The Gurobi Optimizer (often referred to as simply, “Gurobi”) is a solver, since it uses mathematical optimization to calculate the answer to a problem.

  6. Frank–Wolfe algorithm - Wikipedia

    en.wikipedia.org/wiki/Frank–Wolfe_algorithm

    The Frank–Wolfe algorithm is an iterative first-order optimization algorithm for constrained convex optimization.Also known as the conditional gradient method, [1] reduced gradient algorithm and the convex combination algorithm, the method was originally proposed by Marguerite Frank and Philip Wolfe in 1956. [2]

  7. Lagrange multipliers on Banach spaces - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multipliers_on...

    In the field of calculus of variations in mathematics, the method of Lagrange multipliers on Banach spaces can be used to solve certain infinite-dimensional constrained optimization problems. The method is a generalization of the classical method of Lagrange multipliers as used to find extrema of a function of finitely many variables.

  8. MINOS (optimization software) - Wikipedia

    en.wikipedia.org/wiki/MINOS_(optimization_software)

    MINOS is a Fortran software package for solving linear and nonlinear mathematical optimization problems. MINOS (Modular In-core Nonlinear Optimization System) may be used for linear programming, quadratic programming, and more general objective functions and constraints, and for finding a feasible point for a set of linear or nonlinear equalities and inequalities.

  9. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    One can ask whether a minimizer point of the original, constrained optimization problem (assuming one exists) has to satisfy the above KKT conditions. This is similar to asking under what conditions the minimizer x ∗ {\displaystyle x^{*}} of a function f ( x ) {\displaystyle f(x)} in an unconstrained problem has to satisfy the condition ∇ f ...