enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dummy variable (statistics) - Wikipedia

    en.wikipedia.org/wiki/Dummy_variable_(statistics)

    Dummy variables are commonly used in regression analysis to represent categorical variables that have more than two levels, such as education level or occupation. In this case, multiple dummy variables would be created to represent each level of the variable, and only one dummy variable would take on a value of 1 for each observation.

  3. Data transformation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Data_transformation...

    Equation: = + Meaning: A unit increase in X is associated with an average of b units increase in Y. Equation: ⁡ = + (From exponentiating both sides of the equation: =) Meaning: A unit increase in X is associated with an average increase of b units in ⁡ (), or equivalently, Y increases on an average by a multiplicative factor of .

  4. Repeated measures design - Wikipedia

    en.wikipedia.org/wiki/Repeated_measures_design

    Repeated measures design is a research design that involves multiple measures of the same variable taken on the same or matched subjects either under different conditions or over two or more time periods. [1] For instance, repeated measurements are collected in a longitudinal study in which change over time is assessed.

  5. Multiple correspondence analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_correspondence...

    MCA is performed by applying the CA algorithm to either an indicator matrix (also called complete disjunctive table – CDT) or a Burt table formed from these variables. [citation needed] An indicator matrix is an individuals × variables matrix, where the rows represent individuals and the columns are dummy variables representing categories of the variables. [1]

  6. Partial regression plot - Wikipedia

    en.wikipedia.org/wiki/Partial_regression_plot

    In applied statistics, a partial regression plot attempts to show the effect of adding another variable to a model that already has one or more independent variables. Partial regression plots are also referred to as added variable plots, adjusted variable plots, and individual coefficient plots.

  7. Goodman and Kruskal's lambda - Wikipedia

    en.wikipedia.org/wiki/Goodman_and_Kruskal's_lambda

    Although Goodman and Kruskal's lambda is a simple way to assess the association between variables, it yields a value of 0 (no association) whenever two variables are in accord—that is, when the modal category is the same for all values of the independent variable, even if the modal frequencies or percentages vary. As an example, consider the ...

  8. Compositional data - Wikipedia

    en.wikipedia.org/wiki/Compositional_data

    These compositions can be translated into weight per cent multiplying each component by the appropriated constant. In demography , a town may be a compositional data point in a sample of towns; a town in which 35% of the people are Christians, 55% are Muslims, 6% are Jews, and the remaining 4% are others would correspond to the quadruple [0.35 ...

  9. Explained sum of squares - Wikipedia

    en.wikipedia.org/wiki/Explained_sum_of_squares

    The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n × 1 vector of the ...