Search results
Results from the WOW.Com Content Network
[1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [4] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.
The following exergonic equilibrium gives rise to the triiodide ion: . I 2 + I − ⇌ I − 3. In this reaction, iodide is viewed as a Lewis base, and the iodine is a Lewis acid.The process is analogous to the reaction of S 8 with sodium sulfide (which forms polysulfides) except that the higher polyiodides have branched structures.
Figure 2: A donor-acceptor interaction diagram illustrating construction of the triiodide anion σ natural bond orbitals from I 2 and I − fragments. In the natural bond orbital viewpoint of 3c–4e bonding, the triiodide anion is constructed from the combination of the diiodine (I 2 ) σ molecular orbitals and an iodide (I − ) lone pair.
The aqueous solution is highly acidic, pH of 0.1N solution is 1.1. It decomposes to arsenic trioxide, elemental arsenic and iodine when heated in air at 200 °C. The decomposition, however, commences at 100 °C and occurs with the liberation of iodine.
Molecular orbital diagrams are diagrams of molecular orbital (MO) energy levels, shown as short horizontal lines in the center, flanked by constituent atomic orbital (AO) energy levels for comparison, with the energy levels increasing from the bottom to the top. Lines, often dashed diagonal lines, connect MO levels with their constituent AO levels.
The polyiodides are a class of polyhalogen anions composed entirely of iodine atoms. [1] [2] The most common member is the triiodide ion, I −3.Other known larger polyiodides include [I 4] 2−, [I 5] −, [I 6] 2−, [I 7] −, [I 8] 2−, [I 9] −, [I 10] 2−, [I 10] 4−, [I 11] 3−, [I 12] 2−, [I 13] 3−, [I 14] 4-, [I 16] 2−, [I 22] 4−, [I 26] 3−, [I 26] 4−, [I 28] 4− and ...
For example, NH 3 is a Lewis base, because it can donate its lone pair of electrons. Trimethylborane [(CH 3) 3 B] is a Lewis acid as it is capable of accepting a lone pair. In a Lewis adduct, the Lewis acid and base share an electron pair furnished by the Lewis base, forming a dative bond. [1]
Solutions of metal aquo complexes are acidic owing to the ionization of protons from the water ligands. In dilute solution chromium(III) aquo complex has a pK a of about 4.3, affording a metal hydroxo complex: [Cr(H 2 O) 6] 3+ ⇌ [Cr(H 2 O) 5 (OH)] 2+ + H + Thus, the aquo ion is a weak acid, of comparable strength to acetic acid (pK a of about ...