Search results
Results from the WOW.Com Content Network
In machine learning, the delta rule is a gradient descent learning rule for updating the weights of the inputs to artificial neurons in a single-layer neural network. [1]
In matrix form, Oja's rule can be written = [() ()] (),and the Gram-Schmidt algorithm is = [() ()] (),where w(t) is any matrix, in this case representing synaptic weights, Q = η x x T is the autocorrelation matrix, simply the outer product of inputs, diag is the function that diagonalizes a matrix, and lower is the function that sets all matrix elements on or above the diagonal equal to 0.
In general, the risk () cannot be computed because the distribution (,) is unknown to the learning algorithm. However, given a sample of iid training data points, we can compute an estimate, called the empirical risk, by computing the average of the loss function over the training set; more formally, computing the expectation with respect to the empirical measure:
In a learning problem, the goal is to develop a function () that predicts output values for each input datum . The subscript n {\displaystyle n} indicates that the function f n {\displaystyle f_{n}} is developed based on a data set of n {\displaystyle n} data points.
In machine learning, the vanishing gradient problem is the problem of greatly diverging gradient magnitudes between earlier and later layers encountered when training neural networks with backpropagation.
In computational learning theory, probably approximately correct (PAC) learning is a framework for mathematical analysis of machine learning. It was proposed in 1984 by Leslie Valiant . [ 1 ]
In this case, player allocates higher weight to the actions that had a better outcome and choose his strategy relying on these weights. In machine learning, Littlestone applied the earliest form of the multiplicative weights update rule in his famous winnow algorithm, which is similar to Minsky and Papert's earlier perceptron learning algorithm ...
Supervised learning involves learning from a training set of data. Every point in the training is an input–output pair, where the input maps to an output. The learning problem consists of inferring the function that maps between the input and the output, such that the learned function can be used to predict the output from future input.