Search results
Results from the WOW.Com Content Network
An example of a wind turbine, this 3 bladed turbine is the classic design of modern wind turbines Wind turbine components : 1-Foundation, 2-Connection to the electric grid, 3-Tower, 4-Access ladder, 5-Wind orientation control (Yaw control), 6-Nacelle, 7-Generator, 8-Anemometer, 9-Electric or Mechanical Brake, 10-Gearbox, 11-Rotor blade, 12-Blade pitch control, 13-Rotor hub
Wind-turbine blades in laydown yard awaiting installation. The primary application of wind turbines is to generate energy using the wind. Hence, the aerodynamics is a very important aspect of wind turbines. Like most machines, wind turbines come in many different types, all of them based on different energy extraction concepts.
IEC 61400 is a set of design requirements made to ensure that wind turbines are appropriately engineered against damage from hazards within the planned lifetime. The standard concerns most aspects of the turbine life from site conditions before construction, to turbine components being tested, [ 1 ] assembled and operated.
[100] [101] Ice accretion on turbine blades has also been found to greatly reduce the efficiency of wind turbines, which is a common challenge in cold climates where in-cloud icing and freezing rain events occur. [102] Deicing is mainly performed by internal heating or in some cases, by helicopters spraying clean warm water on the blades. [103]
One reason for the low efficiency of a Savonius wind turbine is that roughly only half of the turbine generates positive torque, while the other side moves against the wind and thus produces negative torque. A variant of SWT is the Harmony wind turbine [11] with helix-shaped blades and an automatic furling mechanism during high-speed wind ...
Turbines equipped with a diffuser-shaped shroud and a broad exit ring generate 2–5 times more power than bare wind turbines for any given wind speed or turbine diameter. [2] Further analysis concludes that the Betz's limit can be exceeded if the wind turbine were to be equipped with a diffuser.
Modern large wind turbines achieve peak values for C P in the range of 0.45 to 0.50, [2] [full citation needed] about 75–85% of the theoretically possible maximum. In high wind speed, where the turbine is operating at its rated power, the turbine rotates (pitches) its blades to lower C P to protect itself from damage.
An advantage of a gearbox is that generators are typically designed to have the rotor rotating at a high speed within the stator. Direct drive wind turbines do not exhibit this feature. A disadvantage of a gearbox is reliability and failure rates. [4] An example of a wind turbine without a gearbox is the Enercon E82. [5]