Search results
Results from the WOW.Com Content Network
Schematic illustration of one reaction cycle of the ALD process, using the trimethylaluminium (TMA) -water process to make thin aluminium oxide films as (simplified) example. There, the starting surface contains hydroxyls (OH groups) as reactive sites; Step 1 is the reaction of TMA; Step 2 is a purge or evacuation step, Step 3 is the reaction ...
Atomic layer deposition (ALD) depends on very small amounts of water vapor for High-K film formation. The technique requires the proper molecule be available and not replaced by competitive species that will disrupt the lattice structure. Temperature control of both the gas and water, as well as level control, affect delivery rate.
Also known as hafnium dioxide or hafnia, this colourless solid is one of the most common and stable compounds of hafnium. It is an electrical insulator with a band gap of 5.3~5.7 eV. [2] Hafnium dioxide is an intermediate in some processes that give hafnium metal. Hafnium(IV) oxide is quite inert.
Atomic layer epitaxy (ALE), [1] more generally known as atomic layer deposition (ALD), [2] is a specialized form of thin film growth that typically deposit alternating monolayers of two elements onto a substrate. The crystal lattice structure achieved is thin, uniform, and aligned with the structure of the substrate.
Sequential infiltration synthesis (SIS) is a technique derived from atomic layer deposition (ALD) in which a polymer is infused with inorganic material using sequential, self-limiting exposures to gaseous precursors, enabling precise manipulation over the composition, structure, and properties. The technique has applications in fields such as ...
The white hafnium(IV) oxide (HfO 2), also known as hafnium dioxide or hafnia, with a melting point of 2,812 °C and a boiling point of roughly 5,100 °C, is very similar to zirconia, but slightly more basic. [13] It is an electrical insulator with a band gap of 5.3~5.7 eV. [15] Hafnium(IV) oxide typically adopts the same structure as zirconia ...
For high volume process annealing, gas fired conveyor furnaces are often used. For large workpieces or high quantity parts, car-bottom furnaces are used so workers can easily move the parts in and out. Once the annealing process is successfully completed, workpieces are sometimes left in the oven so the parts cool in a controllable way.
The Hall–Héroult process is the major industrial process for smelting aluminium. It involves dissolving aluminium oxide (alumina) (obtained most often from bauxite , aluminium 's chief ore, through the Bayer process ) in molten cryolite and electrolyzing the molten salt bath, typically in a purpose-built cell.