enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degrees of freedom (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)

    In physics, the degrees of freedom (DOF) of a mechanical system is the number of independent parameters that define its configuration or state. It is important in the analysis of systems of bodies in mechanical engineering , structural engineering , aerospace engineering , robotics , and other fields.

  3. Chebychev–Grübler–Kutzbach criterion - Wikipedia

    en.wikipedia.org/wiki/Chebychev–Grübler...

    An example of a simple open chain is a serial robot manipulator. These robotic systems are constructed from a series of links connected by six one degree-of-freedom revolute or prismatic joints, so the system has six degrees of freedom. An example of a simple closed chain is the RSSR spatial four-bar linkage.

  4. Six degrees of freedom - Wikipedia

    en.wikipedia.org/wiki/Six_degrees_of_freedom

    The term is important in mechanical systems, especially biomechanical systems, for analyzing and measuring properties of these types of systems that need to account for all six degrees of freedom. Measurement of the six degrees of freedom is accomplished today through both AC and DC magnetic or electromagnetic fields in sensors that transmit ...

  5. Degrees of freedom (physics and chemistry) - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom_(physics...

    In physics and chemistry, a degree of freedom is an independent physical parameter in the chosen parameterization of a physical system.More formally, given a parameterization of a physical system, the number of degrees of freedom is the smallest number of parameters whose values need to be known in order to always be possible to determine the values of all parameters in the chosen ...

  6. Generalized coordinates - Wikipedia

    en.wikipedia.org/wiki/Generalized_coordinates

    There is one for each degree of freedom, so the number of generalized coordinates equals the number of degrees of freedom, n. A degree of freedom corresponds to one quantity that changes the configuration of the system, for example the angle of a pendulum, or the arc length traversed by a bead along a wire. If it is possible to find from the ...

  7. Degrees of freedom - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom

    In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinitesimal object on the plane might have additional degrees of freedoms related to its orientation.

  8. Overconstrained mechanism - Wikipedia

    en.wikipedia.org/wiki/Overconstrained_mechanism

    In mechanical engineering, an overconstrained mechanism is a linkage that has more degrees of freedom than is predicted by the mobility formula. The mobility formula evaluates the degree of freedom of a system of rigid bodies that results when constraints are imposed in the form of joints between the links.

  9. Phase space - Wikipedia

    en.wikipedia.org/wiki/Phase_space

    In a phase space, every degree of freedom or parameter of the system is represented as an axis of a multidimensional space; a one-dimensional system is called a phase line, while a two-dimensional system is called a phase plane. For every possible state of the system or allowed combination of values of the system's parameters, a point is ...