Search results
Results from the WOW.Com Content Network
More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope , which is a set defined as the intersection of finitely many half spaces , each of which is defined by a linear inequality.
Covering problems are minimization problems and usually integer linear programs, whose dual problems are called packing problems. The most prominent examples of covering problems are the set cover problem , which is equivalent to the hitting set problem , and its special cases, the vertex cover problem and the edge cover problem .
Similarly, an integer program (consisting of a collection of linear constraints and a linear objective function, as in a linear program, but with the additional restriction that the variables must take on only integer values) satisfies both the monotonicity and locality properties of an LP-type problem, with the same general position ...
Linear Template Fit (LTF) [7] combines a linear regression with (generalized) least squares in order to determine the best estimator. The Linear Template Fit addresses the frequent issue, when the residuals cannot be expressed analytically or are too time consuming to be evaluate repeatedly, as it is often the case in iterative minimization ...
Such a formulation is called an optimization problem or a mathematical programming problem (a term not directly related to computer programming, but still in use for example in linear programming – see History below). Many real-world and theoretical problems may be modeled in this general framework. Since the following is valid:
This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP. [4] More recent references consider outcome set based solution concepts [5] and corresponding algorithms.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
This is a formulation of the Lax–Milgram theorem which relies on properties of the symmetric part of the bilinear form. It is not the most general form. It is not the most general form. Let V {\displaystyle V} be a real Hilbert space and a ( ⋅ , ⋅ ) {\displaystyle a(\cdot ,\cdot )} a bilinear form on V {\displaystyle V} , which is