Search results
Results from the WOW.Com Content Network
ϕ is known as a velocity potential for u. A velocity potential is not unique. If ϕ is a velocity potential, then ϕ + f(t) is also a velocity potential for u, where f(t) is a scalar function of time and can be constant. Velocity potentials are unique up to a constant, or a function solely of the temporal variable.
The concept and the name of gauge theory derives from the work of Hermann Weyl in 1918. [1] Weyl, in an attempt to generalize the geometrical ideas of general relativity to include electromagnetism, conjectured that Eichinvarianz or invariance under the change of scale (or "gauge") might also be a local symmetry of general relativity.
The Liénard–Wiechert potentials describe the classical electromagnetic effect of a moving electric point charge in terms of a vector potential and a scalar potential in the Lorenz gauge. Stemming directly from Maxwell's equations , these describe the complete, relativistically correct, time-varying electromagnetic field for a point charge in ...
A particular choice of the scalar and vector potentials is a gauge (more precisely, gauge potential) and a scalar function ψ used to change the gauge is called a gauge function. [citation needed] The existence of arbitrary numbers of gauge functions ψ(r, t) corresponds to the U(1) gauge freedom of this theory. Gauge fixing can be done in many ...
Note added on 26 November 2024: It should be pointed out that Lorenz actually derived the 'condition' from postulated integral expressions for the potentials (nowadays known as retarded potentials), whereas Lorentz (and before him Emil Wiechert) imposed it on the potentials to fix the gauge (see, e.g, his 1904 Encyclopedia article on electron ...
A gauge theory is a type of theory in physics.The word gauge means a measurement, a thickness, an in-between distance (as in railroad tracks), or a resulting number of units per certain parameter (a number of loops in an inch of fabric or a number of lead balls in a pound of ammunition). [1]
Potential flow describes the velocity field as the gradient of a scalar function: the velocity potential. As a result, a potential flow is characterized by an irrotational velocity field , which is a valid approximation for several applications.
The ability to vary the gauge potential at different points in space and time (by changing (,)) without changing the physics is called a local invariance. Electromagnetic theory possess the simplest kind of local gauge symmetry called () (see unitary group). A theory that displays local gauge invariance is called a gauge theory.