Search results
Results from the WOW.Com Content Network
Hypothesis (d) is also non-parametric but, in addition, it does not even specify the underlying form of the distribution and may now be reasonably termed distribution-free. Notwithstanding these distinctions, the statistical literature now commonly applies the label "non-parametric" to test procedures that we have just termed "distribution-free ...
Siegel–Tukey test, named after Sidney Siegel and John Tukey, is a non-parametric test which may be applied to data measured at least on an ordinal scale. It tests for differences in scale between two groups. The test is used to determine if one of two groups of data tends to have more widely dispersed values than the other.
Parametric tests assume that the data follow a particular distribution, typically a normal distribution, while non-parametric tests make no assumptions about the distribution. [7] Non-parametric tests have the advantage of being more resistant to misbehaviour of the data, such as outliers . [ 7 ]
Nonparametric statistics is a branch of statistics concerned with non-parametric statistical models and non-parametric statistical tests. Non-parametric statistics are statistics that do not estimate population parameters. In contrast, see parametric statistics. Nonparametric models differ from parametric models in that the model structure is ...
In statistics, the Brunner Munzel test [1] [2] [3] (also called the generalized Wilcoxon test) is a nonparametric test of the null hypothesis that, for randomly selected values X and Y from two populations, the probability of X being greater than Y is equal to the probability of Y being greater than X.
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.
The Kendall rank coefficient is often used as a test statistic in a statistical hypothesis test to establish whether two variables may be regarded as statistically dependent. This test is non-parametric , as it does not rely on any assumptions on the distributions of X or Y or the distribution of ( X , Y ).
Durbin test is a non-parametric statistical test for balanced incomplete designs that reduces to the Friedman test in the case of a complete block design. In the analysis of designed experiments , the Friedman test is the most common non-parametric test for complete block designs.