Search results
Results from the WOW.Com Content Network
In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.
One can obtain such a root by choosing a () th primitive root of unity (that must exist by definition of λ), named and compute the power () /. If x is a primitive kth root of unity and also a (not necessarily primitive) ℓth root of unity, then k is a divisor of ℓ.
For n = 1, the cyclotomic polynomial is Φ 1 (x) = x − 1 Therefore, the only primitive first root of unity is 1, which is a non-primitive n th root of unity for every n > 1. As Φ 2 (x) = x + 1, the only primitive second (square) root of unity is −1, which is also a non-primitive n th root of unity for every even n > 2.
In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers. [1]Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of their relation with Fermat's Last Theorem.
q-3, q-4, q-9, and, for q > 11, q-12 are primitive roots If p is a Sophie Germain prime greater than 3, then p must be congruent to 2 mod 3. For, if not, it would be congruent to 1 mod 3 and 2 p + 1 would be congruent to 3 mod 3, impossible for a prime number. [ 16 ]
In mathematics, a primitive root may mean: Primitive root modulo n in modular arithmetic; Primitive nth root of unity amongst the solutions of z n = 1 in a field; See ...
In number theory, Artin's conjecture on primitive roots states that a given integer a that is neither a square number nor −1 is a primitive root modulo infinitely many primes p. The conjecture also ascribes an asymptotic density to these primes. This conjectural density equals Artin's constant or a rational multiple thereof.
Artin's conjecture on primitive roots The (now proved) conjecture that finite fields are quasi-algebraically closed; see Chevalley–Warning theorem The (now disproved) conjecture that any algebraic form over the p-adics of degree d in more than d 2 variables represents zero: that is, that all p -adic fields are C 2 ; see Ax–Kochen theorem or ...