enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    Fig. 1: Critical stress vs slenderness ratio for steel, for E = 200 GPa, yield strength = 240 MPa. Euler's critical load or Euler's buckling load is the compressive load at which a slender column will suddenly bend or buckle. It is given by the formula: [1] = where

  3. Bending moment - Wikipedia

    en.wikipedia.org/wiki/Bending_moment

    In solid mechanics, a bending moment is the reaction induced in a structural element when an external force or moment is applied to the element, causing the element to bend. [ 1 ] [ 2 ] The most common or simplest structural element subjected to bending moments is the beam .

  4. Flexural strength - Wikipedia

    en.wikipedia.org/wiki/Flexural_strength

    Fig. 3 - Beam under 3 point bending. For a rectangular sample under a load in a three-point bending setup (Fig. 3), starting with the classical form of maximum bending stress: = M is the moment in the beam; c is the maximum distance from the neutral axis to the outermost fiber in the bending plane

  5. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    In the absence of a qualifier, the term bending is ambiguous because bending can occur locally in all objects. Therefore, to make the usage of the term more precise, engineers refer to a specific object such as; the bending of rods, [2] the bending of beams, [1] the bending of plates, [3] the bending of shells [2] and so on.

  6. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    The stress due to shear force is maximum along the neutral axis of the beam (when the width of the beam, t, is constant along the cross section of the beam; otherwise an integral involving the first moment and the beam's width needs to be evaluated for the particular cross section), and the maximum tensile stress is at either the top or bottom ...

  7. Bending stiffness - Wikipedia

    en.wikipedia.org/wiki/Bending_stiffness

    The bending stiffness is the resistance of a member against bending deflection/deformation. It is a function of the Young's modulus E {\displaystyle E} , the second moment of area I {\displaystyle I} of the beam cross-section about the axis of interest, length of the beam and beam boundary condition.

  8. Flexural rigidity - Wikipedia

    en.wikipedia.org/wiki/Flexural_rigidity

    where is the flexural modulus (in Pa), is the second moment of area (in m 4), is the transverse displacement of the beam at x, and () is the bending moment at x. The flexural rigidity (stiffness) of the beam is therefore related to both E {\displaystyle E} , a material property, and I {\displaystyle I} , the physical geometry of the beam.

  9. Theorem of three moments - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_three_moments

    where a 1 is the area on the bending moment diagram due to vertical loads on AB, a 2 is the area due to loads on BC, x 1 is the distance from A to the centroid of the bending moment diagram of beam AB, x 2 is the distance from C to the centroid of the area of the bending moment diagram of beam BC.