enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  3. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectationmaximization...

    In structural engineering, the Structural Identification using Expectation Maximization (STRIDE) [24] algorithm is an output-only method for identifying natural vibration properties of a structural system using sensor data (see Operational Modal Analysis). EM is also used for data clustering.

  4. Mixture model - Wikipedia

    en.wikipedia.org/wiki/Mixture_model

    Matlab code for GMM Implementation using EM algorithm; jMEF: A Java open source library for learning and processing mixtures of exponential families (using duality with Bregman divergences). Includes a Matlab wrapper. Very Fast and clean C implementation of the Expectation Maximization (EM) algorithm for estimating Gaussian Mixture Models (GMMs).

  5. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    The slow "standard algorithm" for k-means clustering, and its associated expectationmaximization algorithm, is a special case of a Gaussian mixture model, specifically, the limiting case when fixing all covariances to be diagonal, equal and have infinitesimal small variance.

  6. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    The parameters of the model, and for =, …,, are typically estimated by maximum likelihood estimation using the expectation-maximization algorithm (EM); see also EM algorithm and GMM model. Bayesian inference is also often used for inference about finite mixture models. [ 2 ]

  7. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  8. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Second, it is conceptually close to nearest neighbor classification, and as such is popular in machine learning. Third, it can be seen as a variation of model-based clustering, and Lloyd's algorithm as a variation of the Expectation-maximization algorithm for this model discussed below. k-means clustering examples

  9. Generalized method of moments - Wikipedia

    en.wikipedia.org/wiki/Generalized_method_of_moments

    In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.