Search results
Results from the WOW.Com Content Network
The sample odds ratio n 11 n 00 / n 10 n 01 is easy to calculate, and for moderate and large samples performs well as an estimator of the population odds ratio. When one or more of the cells in the contingency table can have a small value, the sample odds ratio can be biased and exhibit high variance .
If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: = = = = (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.
In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis , logistic regression [ 1 ] (or logit regression ) estimates the parameters of a logistic model (the coefficients in the linear or non linear ...
The name Log5 is due to Bill James [1] but the method of using odds ratios in this way dates back much farther. This is in effect a logistic rating model and is therefore equivalent to the Bradley–Terry model used for paired comparisons , the Elo rating system used in chess and the Rasch model used in the analysis of categorical data.
In probability theory and statistics, odds and similar ratios may be more natural or more convenient than probabilities. In some cases the log-odds are used, which is the logit of the probability. Most simply, odds are frequently multiplied or divided, and log converts multiplication to addition and division to subtractions.
In probability theory and computer science, a log probability is simply a logarithm of a probability. [1] The use of log probabilities means representing probabilities on a logarithmic scale ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} , instead of the standard [ 0 , 1 ] {\displaystyle [0,1]} unit interval .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A logarithm of a likelihood ratio is equal to the difference of the log-likelihoods: () = = (). Just as the likelihood, given no event, being 1, the log-likelihood, given no event, is 0, which corresponds to the value of the empty sum: without any data, there is no support for any models.